1.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
2.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
3.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
4.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
5.Automated Detection and Segmentation of Bone Metastases on Spine MRI Using U-Net:A Multicenter Study
Dong Hyun KIM ; Jiwoon SEO ; Ji Hyun LEE ; Eun-Tae JEON ; DongYoung JEONG ; Hee Dong CHAE ; Eugene LEE ; Ji Hee KANG ; Yoon-Hee CHOI ; Hyo Jin KIM ; Jee Won CHAI
Korean Journal of Radiology 2024;25(4):363-373
Objective:
To develop and evaluate a deep learning model for automated segmentation and detection of bone metastasis on spinal MRI.
Materials and Methods:
We included whole spine MRI scans of adult patients with bone metastasis: 662 MRI series from 302 patients (63.5 ± 11.5 years; male:female, 151:151) from three study centers obtained between January 2015 and August 2021 for training and internal testing (random split into 536 and 126 series, respectively) and 49 MRI series from 20 patients (65.9 ± 11.5 years; male:female, 11:9) from another center obtained between January 2018 and August 2020 for external testing. Three sagittal MRI sequences, including non-contrast T1-weighted image (T1), contrast-enhanced T1-weighted Dixon fat-only image (FO), and contrast-enhanced fat-suppressed T1-weighted image (CE), were used. Seven models trained using the 2D and 3D U-Nets were developed with different combinations (T1, FO, CE, T1 + FO, T1 + CE, FO + CE, and T1 + FO + CE). The segmentation performance was evaluated using Dice coefficient, pixel-wise recall, and pixel-wise precision. The detection performance was analyzed using per-lesion sensitivity and a free-response receiver operating characteristic curve. The performance of the model was compared with that of five radiologists using the external test set.
Results:
The 2D U-Net T1 + CE model exhibited superior segmentation performance in the external test compared to the other models, with a Dice coefficient of 0.699 and pixel-wise recall of 0.653. The T1 + CE model achieved per-lesion sensitivities of 0.828 (497/600) and 0.857 (150/175) for metastases in the internal and external tests, respectively. The radiologists demonstrated a mean per-lesion sensitivity of 0.746 and a mean per-lesion positive predictive value of 0.701 in the external test.
Conclusion
The deep learning models proposed for automated segmentation and detection of bone metastases on spinal MRI demonstrated high diagnostic performance.
6.2023 Clinical Practice Guidelines for Diabetes Mellitus of the Korean Diabetes Association
Jong Han CHOI ; Kyung Ae LEE ; Joon Ho MOON ; Suk CHON ; Dae Jung KIM ; Hyun Jin KIM ; Nan Hee KIM ; Ji A SEO ; Mee Kyoung KIM ; Jeong Hyun LIM ; YoonJu SONG ; Ye Seul YANG ; Jae Hyeon KIM ; You-Bin LEE ; Junghyun NOH ; Kyu Yeon HUR ; Jong Suk PARK ; Sang Youl RHEE ; Hae Jin KIM ; Hyun Min KIM ; Jung Hae KO ; Nam Hoon KIM ; Chong Hwa KIM ; Jeeyun AHN ; Tae Jung OH ; Soo-Kyung KIM ; Jaehyun KIM ; Eugene HAN ; Sang-Man JIN ; Won Suk CHOI ; Min Kyong MOON ; ;
Diabetes & Metabolism Journal 2023;47(5):575-594
In May 2023, the Committee of Clinical Practice Guidelines of the Korean Diabetes Association published the revised clinical practice guidelines for Korean adults with diabetes and prediabetes. We incorporated the latest clinical research findings through a comprehensive systematic literature review and applied them in a manner suitable for the Korean population. These guidelines are designed for all healthcare providers nationwide, including physicians, diabetes experts, and certified diabetes educators who manage patients with diabetes or individuals at risk of developing diabetes. Based on recent changes in international guidelines and the results of a Korean epidemiological study, the recommended age for diabetes screening has been lowered. In collaboration with the relevant Korean medical societies, recently revised guidelines for managing hypertension and dyslipidemia in patients with diabetes have been incorporated into this guideline. An abridgment containing practical information on patient education and systematic management in the clinic was published separately.
7.Cardiovascular Risk Is Elevated in Lean Subjects with Nonalcoholic Fatty Liver Disease
Yuna KIM ; Eugene HAN ; Jae Seung LEE ; Hye Won LEE ; Beom Kyung KIM ; Mi Kyung KIM ; Hye Soon KIM ; Jun Yong PARK ; Do Young KIM ; Sang Hoon AHN ; Byung-Wan LEE ; Eun Seok KANG ; Bong-Soo CHA ; Yong-ho LEE ; Seung Up KIM
Gut and Liver 2022;16(2):290-299
Background/Aims:
Nonalcoholic fatty liver disease (NAFLD) and obesity are independently associated with an increased risk for atherosclerotic cardiovascular disease (ASCVD), the leading cause of mortality in patients with NAFLD. Many NAFLD patients are lean, but their ASCVD risk compared to obese subjects with NAFLD is unclear.
Methods:
Data from the 2008 to 2011 Korea National Health and Nutrition Examination Surveysdatabase were analyzed (n=4,786). NAFLD was defined as a comprehensive NAFLD score ≥40 or a liver fat score ≥–0.640. ASCVD risk was evaluated using the American College of Cardiol-ogy/American Heart Association guidelines.
Results:
The frequency of subjects without NAFLD, with obese NAFLD, and with lean NAFLD was 62.4% (n=2,987), 26.6% (n=1,274), and 11.0% (n=525), respectively. Subjects with lean NAFLD had a significantly higher ASCVD score and prevalence of a high ASCVD risk (mean 15.6±14.0, 51.6%) than those with obese NAFLD and without NAFLD (mean 11.2±11.4, 39.8%; mean 7.9±10.9, 25.5%; all p<0.001). Subjects with lean NAFLD and significant liver fibrosis showed a significantly higher odds ratio for a high risk for ASCVD than those with obese NAFLD with or without significant liver fibrosis (odds ratio, 2.60 vs 1.93; p=0.023).
Conclusions
Subjects with lean NAFLD had a significantly higher ASCVD score and prevalence of high risk for ASCVD than those with obese NAFLD. Similarly, lean subjects with significant liver fibrosis had a higher probability of ASCVD than obese subjects in the subpopulation with NAFLD.
8.Fibrotic Burden Determines Cardiovascular Risk among Subjects with Metabolic Dysfunction-Associated Fatty Liver Disease
Eugene HAN ; Yong-ho LEE ; Jae Seung LEE ; Hye Won LEE ; Beom Kyung KIM ; Jun Yong PARK ; Do Young KIM ; Sang Hoon AHN ; Byung-Wan LEE ; Eun Seok KANG ; Bong-Soo CHA ; Seung Up KIM
Gut and Liver 2022;16(5):786-797
Background/Aims:
Metabolic dysfunction associated fatty liver disease (MAFLD) has recently been introduced to compensate for the conventional concept of nonalcoholic fatty liver disease (NAFLD). We explored whether fibrotic burden determines the risk of atherosclerotic cardiovascular disease (ASCVD) among subjects with MAFLD.
Methods:
We recruited 9,444 participants from the Korea National Health and Nutrition Examination Survey (2008 to 2011). Liver fibrosis was identified using the fibrosis-4 (FIB-4) index and NAFLD fibrosis score. The 10-year ASCVD risk score (>10%) was used to determine a high probability ASCVD risk. For sensitivity analysis, propensity score matching was assessed to subjects with aged 40 to 75 years free from ASCVD.
Results:
The prevalence of MAFLD was 38.0% (n=3,592). The ASCVD risk scores stratified in quartile were positively correlated to MAFLD and FIB-4 defined-significant liver fibrosis (p for trend <0.001). Individuals with both MAFLD and FIB-4 defined-significant liver fibrosis had a greater chance of high probability ASCVD risk (odds ratio [OR]=2.40; p<0.001) than those without MAFLD. The impact of MAFLD on high probability ASCVD risk was greater than that of significant liver fibrosis (OR=4.72 for MAFLD vs OR=1.88 for FIB-4 defined-significant liver fibrosis; all p<0.001). Among participants with MAFLD, low muscle mass enhanced the risk of significant liver fibrosis (OR=1.56 to 2.43; p<0.001). When NAFLD fibrosis score was applied to define significant liver fibrosis, similar findings were observed.
Conclusions
Individuals with MAFLD had a substantial ASCVD risk compared to those without MAFLD. Accompanying significant liver fibrosis further enhanced the risk of ASCVD among subjects with MAFLD.
9.Carpal Tunnel Syndrome Caused by Pseudogout
Eugene KIM ; Seoung Wan CHAE ; Hoseok LEE ; Seok Won LEE
The Journal of the Korean Orthopaedic Association 2019;54(4):372-376
Carpal tunnel syndrome (CTS) caused by pseudogout is an uncommon disease. The authors report a 65-year-old female who complained of sudden pain and neurological symptoms on her left hand. Surgical decompression was performed. In the histologic study, a calcium pyrophosphate dihydrate crystal deposit was confirmed. Her pain and neurological symptoms were relieved. Because CTS caused by pseudogout is rare, it is difficult to differentiate it from other diseases. This paper reports an uncommon case of CTS caused by pseudogout.
Aged
;
Calcium Pyrophosphate
;
Carpal Tunnel Syndrome
;
Chondrocalcinosis
;
Decompression, Surgical
;
Female
;
Hand
;
Humans
;
Median Nerve
10.Delayed Treatment of Capsaicin Produces Partial Motor Recovery by Enhancing Dopamine Function in MPP⁺-lesioned Rats via Ciliary Neurotrophic Factor
Kyoung In KIM ; Jeong Yeob BAEK ; Jae Yeong JEONG ; Jin Han NAM ; Eun Su PARK ; Eugene BOK ; Won Ho SHIN ; Young Cheul CHUNG ; Byung Kwan JIN
Experimental Neurobiology 2019;28(2):289-299
Transient receptor potential vanilloid subtype 1 (TRPV1) on astrocytes prevents ongoing degeneration of nigrostriatal dopamine (DA) neurons in MPP⁺-lesioned rats via ciliary neurotrophic factor (CNTF). The present study determined whether such a beneficial effect of astrocytic TRPV1 could be achieved after completion of injury of DA neurons, rather than ongoing injury, which seems more relevant to therapeutics. To test this, the MPP⁺-lesioned rat model utilized here exhibited approximately 70~80% degeneration of nigrostriatal DA neurons that was completed at 2 weeks post medial forebrain bundle injection of MPP⁺. TRPV1 agonist, capsaicin (CAP), was intraperitoneally administered. CNTF receptor alpha neutralizing antibody (CNTFRαNAb) was nigral injected to evaluate the role of CNTF endogenously produced by astrocyte through TRPV1 activation on DA neurons. Delayed treatment of CAP produced a significant reduction in amphetamine-induced rotational asymmetry. Accompanying this behavioral recovery, CAP treatment increased CNTF levels and tyrosine hydroxylase (TH) activity in the substantia nigra pars compacta (SNpc), and levels of DA and its metabolites in the striatum compared to controls. Interestingly, behavioral recovery and increases in biochemical indices were not reflected in trophic changes of the DA system. Instead, behavioral recovery was temporal and dependent on the continuous presence of CAP treatment. The results suggest that delayed treatment of CAP increases nigral TH enzyme activity and striatal levels of DA and its metabolites by CNTF endogenously derived from CAP-activated astrocytes through TRPV1, leading to functional recovery. Consequently, these findings may be useful in the treatment of DA imbalances associated with Parkinson's disease.
Animals
;
Antibodies, Neutralizing
;
Astrocytes
;
Capsaicin
;
Ciliary Neurotrophic Factor
;
Dopamine
;
Dopaminergic Neurons
;
Medial Forebrain Bundle
;
Models, Animal
;
Neurons
;
Parkinson Disease
;
Pars Compacta
;
Rats
;
Receptor, Ciliary Neurotrophic Factor
;
Tyrosine 3-Monooxygenase

Result Analysis
Print
Save
E-mail