1.Expression, purification, and characterization of the histidine kinase CarS from Fusobacterium nucleatum.
Zhuting LI ; Xian SHI ; Ruochen FAN ; Lulu WANG ; Tingting BU ; Wei ZHENG ; Xuqiang ZHANG ; Chunshan QUAN
Chinese Journal of Biotechnology 2023;39(4):1596-1608
		                        		
		                        			
		                        			Fusobacterium nucleatum is an opportunistic pathogenic bacterium that can be enriched in colorectal cancer tissues, affecting multiple stages of colorectal cancer development. The two-component system plays an important role in the regulation and expression of genes related to pathogenic resistance and pathogenicity. In this paper, we focused on the CarRS two-component system of F. nucleatum, and the histidine kinase protein CarS was recombinantly expressed and characterized. Several online software such as SMART, CCTOP and AlphaFold2 were used to predict the secondary and tertiary structure of the CarS protein. The results showed that CarS is a membrane protein with two transmembrane helices and contains 9 α-helices and 12 β-folds. CarS protein is composed of two domains, one is the N-terminal transmembrane domain (amino acids 1-170), the other is the C-terminal intracellular domain. The latter is composed of a signal receiving domain (histidine kinases, adenylyl cyclases, methyl-accepting proteins, prokaryotic signaling proteins, HAMP), a phosphate receptor domain (histidine kinase domain, HisKA), and a histidine kinase catalytic domain (histidine kinase-like ATPase catalytic domain, HATPase_c). Since the full-length CarS protein could not be expressed in host cells, a fusion expression vector pET-28a(+)-MBP-TEV-CarScyto was constructed based on the characteristics of secondary and tertiary structures, and overexpressed in Escherichia coli BL21-Codonplus(DE3)RIL. CarScyto-MBP protein was purified by affinity chromatography, ion-exchange chromatography, and gel filtration chromatography with a final concentration of 20 mg/ml. CarScyto-MBP protein showed both protein kinase and phosphotransferase activities, and the MBP tag had no effect on the function of CarScyto protein. The above results provide a basis for in-depth analysis of the biological function of the CarRS two-component system in F. nucleatum.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Histidine Kinase/metabolism*
		                        			;
		                        		
		                        			Fusobacterium nucleatum/metabolism*
		                        			;
		                        		
		                        			Automobiles
		                        			;
		                        		
		                        			Protein Kinases/genetics*
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Colorectal Neoplasms
		                        			
		                        		
		                        	
2.Synergistic effect of β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli in vitro.
Muchen ZHANG ; Huangwei SONG ; Zhiyu ZOU ; Siyuan YANG ; Hui LI ; Chongshan DAI ; Dejun LIU ; Bing SHAO ; Congming WU ; Jianzhong SHEN ; Yang WANG
Chinese Journal of Biotechnology 2023;39(4):1621-1632
		                        		
		                        			
		                        			The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Tigecycline/pharmacology*
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Reactive Oxygen Species/therapeutic use*
		                        			;
		                        		
		                        			Plasmids
		                        			;
		                        		
		                        			Anti-Bacterial Agents/metabolism*
		                        			;
		                        		
		                        			Escherichia coli Infections/microbiology*
		                        			;
		                        		
		                        			Bacteria/genetics*
		                        			;
		                        		
		                        			Microbial Sensitivity Tests
		                        			
		                        		
		                        	
3.Prokaryotic expression, polyclonal antibody preparation, spatio-temporal expression profile and functional analysis of c-Myc of Helicoverpa armigera (Lepidoptera: Noctuidae).
Qian SUO ; Xiaoyan SUN ; Ying ZHANG ; Yujing WANG ; Kaiyu LIU ; Hong YANG ; Huazhu HONG ; Jianxin PENG ; Rong PENG
Chinese Journal of Biotechnology 2023;39(7):2730-2742
		                        		
		                        			
		                        			c-Myc protein encoded by c-Myc (cellular-myelocytomatosis viral oncogene) gene regulates the related gene expression through the Wnt/β-catenin signaling pathway, and has received extensive attention in recent years. The purpose of this study was to express Helicoverpa armigera c-Myc gene (Ha-c-Myc) by using prokaryotic expression system, prepare the polyclonal antibody, examine the spatio-temporal expression profile of Ha-c-Myc, and investigate the possible function of Ha-c-Myc in regulating H. armigera sterol carrier protein-2 (SCP-2) gene expression. The Ha-c-Myc gene was amplified by PCR and cloned into a prokaryotic expression plasmid pET-32a(+). The recombinant plasmid pET-32a-Ha-c-Myc was transformed into Escherichia coli BL21. IPTG was used to induce the expression of the recombinant protein. Protein was purified by Ni2+-NTA column and used to immunize New Zealand rabbits for preparing the polyclonal antibody. The Ha-c-Myc expression levels in different developmental stages (egg, larva, prepupa, pupa, and adult) of H. armigera and different tissues (midgut, fat body, head, and epidermis) of the prepupa were determined by real-time quantitative reverse transcription PCR (qRT-PCR). Ha-c-Myc siRNA was synthesized and transfected into H. armigera Ha cells. The relative mRNA levels of Ha-c-Myc and HaSCP-2 in Ha cells were detected by qRT-PCR. Results showed that the pET-32a-Ha-c-Myc recombinant plasmid was constructed. The soluble Ha-c-Myc protein of about 65 kDa was expressed in E. coli. The polyclonal antibody was prepared. Western blotting analysis suggested that the antibody had high specificity. Enzyme linked immunosorbent assay (ELISA) showed that the titer of the antibody was high. Ha-c-Myc gene expressed at all developmental stages, with high levels in the early and late instars of larva, and the prepupal stage. Tissue expression profiles revealed that Ha-c-Myc expressed in various tissues of prepupa, with high expression level in the midgut, but low levels in the epidermis and fat body. RNAi results showed that the knockdown of Ha-c-Myc expression significantly affected transcription of HaSCP-2, leading to a 50% reduction in HaSCP-2 mRNA expression level. In conclusion, the Ha-c-Myc was expressed through a prokaryotic expression system, and the polyclonal anti-Ha-c-Myc antibody was obtained. Ha-c-Myc may promote the expression of HaSCP-2 and play an important role in the lipid metabolism of H. armigera. These results may facilitate further study on the potential role and function mechanism of Ha-c-Myc in H. armigera and provide experimental data for exploring new targets of green pesticides.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			Moths/genetics*
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Larva/genetics*
		                        			;
		                        		
		                        			Isoantibodies/metabolism*
		                        			;
		                        		
		                        			Antibody Specificity
		                        			
		                        		
		                        	
4.Characterization and application of several lysis cassettes.
Chinese Journal of Biotechnology 2023;39(3):1142-1162
		                        		
		                        			
		                        			Lysis is a common functional module in synthetic biology and is widely used in genetic circuit design. Lysis could be achieved by inducing expression of lysis cassettes originated from phages. However, detailed characterization of lysis cassettes hasn't been reported yet. Here, we first adopted arabinose- and rhamnose-inducible systems to develop inducible expression of five lysis cassettes (S105, A52G, C51S S76C, LKD, LUZ) in Escherichia coli Top10. By measuring OD600, we characterized the lysis behavior of strains harboring different lysis cassettes. These strains were harvested at different growth stages, induced with different concentrations of chemical inducers, or contained plasmids with different copy numbers. We found that although all five lysis cassettes could induce bacterial lysis in Top10, lysis behaviors differed a lot at various conditions. We further found that due to the difference in background expression levels between strain Top10 and Pseudomonas aeruginosa PAO1, it was hard to construct inducible lysis systems in strain PAO1. The lysis cassette controlled by rhamnose-inducible system was finally inserted into the chromosome of strain PAO1 to construct lysis strains after careful screen. The results indicated that LUZ and LKD were more effective in strain PAO1 than S105, A52G and C51S S76C. At last, we constructed an engineered bacteria Q16 using an optogenetic module BphS and the lysis cassette LUZ. The engineered strain was capable of adhering to target surface and achieving light-induced lysis by tuning the strength of ribosome binding sites (RBSs), showing great potential in surface modification.
		                        		
		                        		
		                        		
		                        			Rhamnose/pharmacology*
		                        			;
		                        		
		                        			Plasmids/genetics*
		                        			;
		                        		
		                        			Pseudomonas aeruginosa
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			
		                        		
		                        	
5.Preparation and application of rabbit polyclonal antibody against human lactate dehydrogenase C4(LDHC4).
Axiu HUANG ; Caiyun DENG ; Siyu YANG ; Qinglian ZHANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1118-1124
		                        		
		                        			
		                        			Objective To prepare rabbit polyclonal antibody specifically against human lactate dehydrogenase C4 (LDHC4). Methods Site-directed mutation was performed by PCR to generate the mutated LDHC gene, and the mutated gene was ligated into the pET-28a vector to form the pET-28a-LDHC recombinant expression vector. The recombinant vector was introduced into E. coli BL21 (DE3), and LDHC4 protein was obtained by induced expression. The recombinant protein was used as an antigen to immunize New Zealand rabbits, and the antiserum was obtained after three boosted immunizations. The titer of the antiserum against LDHC4 were detected by ELISA. Western blot was used to detect the specificity of the antiserum, and immunohistochemistry was used to detect the expression of LDHC4 in human triple-negative breast cancer tissue. Results A specific rabbit anti-human LDHC4 polyclonal antibody was obtained with an antibody titer of 1:51 200. The antibody can be used for Western blot and immunohistochemistry. Conclusion The specific rabbit anti-human LDHC4 polyclonal antibody is successfully prepared.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Escherichia coli/genetics*
		                        			;
		                        		
		                        			Antibodies
		                        			;
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			L-Lactate Dehydrogenase/metabolism*
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Antibody Specificity
		                        			
		                        		
		                        	
6.Effects of ppk1 deletion on the drug susceptibility of uropathogenic Escherichia coli producing ESBLs.
Jing Yi OU ; Wan Shan CHEN ; Mei Jun CHEN ; Ling Zhai ZHAO ; Ling Hua LI ; Liang PENG ; Lan LIANG ; Ya Ling SHI
Chinese Journal of Preventive Medicine 2023;57(8):1238-1245
		                        		
		                        			
		                        			To investigate the effect and the mechanism of ppk1 gene deletion on the drug susceptibility of uropathogenic Escherichia coli producing extended-spectrum beta-lactamases (ESBLs-UPEC). The study was an experimental study. From March to April 2021, a strain of ESBLs-UPEC (genotype was TEM combined with CTX-M-14) named as UE210113, was isolated from urine sample of the patient with urinary tract infection in the Laboratory Department of Guangzhou Eighth People's Hospital, meanwhile its ppk1 gene knock-out strain Δpk1 and complemented strain Δpk1-C were constructed by suicide plasmid homologous recombination technique, which was used to study the effect of ppk1 gene on ESBLs-UPEC drug sensitivity and its mechanism. The drug susceptibility of UE210113, Δpk1, and Δpk1-C were measured by Vitek2 Compact System and broth microdilution method. The quantitative expression of ESBLs, outer membrane protein and multidrug efflux systems encoding genes of UE210113, Δpk1 and Δpk1-C were performed by using qRT-PCR analysis. By using two independent sample Mann-Whitney U test, the drug susceptibility results showed that, compared with UE210113 strain, the sensitivities of Δpk1 to ceftazidime, cefepime, tobramycin, minocycline and cotrimoxazole were enhanced (Z=-2.121,P<0.05;Z=-2.236,P<0.05;Z=-2.236,P<0.05;Z=-2.121,P<0.05), and the drug susceptibility of Δpk1-C restored to the same as which of UE210113 (Z=0,P>0.05). The expression levels of ESBLs-enconding genes blaTEM and blaCTX-M-14 in Δpk1 were significantly down-regulated compared with UE210113, but the expression was not restored in Δpk1-C. The expression of outer membrane protein gene omp F in Δpk1 was significantly up-regulated, while the expression of omp A and omp C were down-regulated. The results showed that the expression of multidrug efflux systems encoding genes tol C, mdt A and mdtG were down-regulated in Δpk1 compared with UE210113. The expression of all of the outer membrane protein genes and the multidrug efflux systems genes were restored in Δpk1-C. In conclusion,the lost of ppk1 gene can affect the expression of the outer membrane protein and multidrug efflux systems encoding genes of ESBLs-UPEC, which increase the sensitivity of ESBLs-UPEC to various drugs.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			beta-Lactamases/metabolism*
		                        			;
		                        		
		                        			Uropathogenic Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Urinary Tract Infections
		                        			;
		                        		
		                        			Plasmids
		                        			;
		                        		
		                        			Membrane Proteins/genetics*
		                        			;
		                        		
		                        			Escherichia coli Infections
		                        			;
		                        		
		                        			Microbial Sensitivity Tests
		                        			;
		                        		
		                        			Anti-Bacterial Agents/pharmacology*
		                        			
		                        		
		                        	
7.Effects of ppk1 deletion on the drug susceptibility of uropathogenic Escherichia coli producing ESBLs.
Jing Yi OU ; Wan Shan CHEN ; Mei Jun CHEN ; Ling Zhai ZHAO ; Ling Hua LI ; Liang PENG ; Lan LIANG ; Ya Ling SHI
Chinese Journal of Preventive Medicine 2023;57(8):1238-1245
		                        		
		                        			
		                        			To investigate the effect and the mechanism of ppk1 gene deletion on the drug susceptibility of uropathogenic Escherichia coli producing extended-spectrum beta-lactamases (ESBLs-UPEC). The study was an experimental study. From March to April 2021, a strain of ESBLs-UPEC (genotype was TEM combined with CTX-M-14) named as UE210113, was isolated from urine sample of the patient with urinary tract infection in the Laboratory Department of Guangzhou Eighth People's Hospital, meanwhile its ppk1 gene knock-out strain Δpk1 and complemented strain Δpk1-C were constructed by suicide plasmid homologous recombination technique, which was used to study the effect of ppk1 gene on ESBLs-UPEC drug sensitivity and its mechanism. The drug susceptibility of UE210113, Δpk1, and Δpk1-C were measured by Vitek2 Compact System and broth microdilution method. The quantitative expression of ESBLs, outer membrane protein and multidrug efflux systems encoding genes of UE210113, Δpk1 and Δpk1-C were performed by using qRT-PCR analysis. By using two independent sample Mann-Whitney U test, the drug susceptibility results showed that, compared with UE210113 strain, the sensitivities of Δpk1 to ceftazidime, cefepime, tobramycin, minocycline and cotrimoxazole were enhanced (Z=-2.121,P<0.05;Z=-2.236,P<0.05;Z=-2.236,P<0.05;Z=-2.121,P<0.05), and the drug susceptibility of Δpk1-C restored to the same as which of UE210113 (Z=0,P>0.05). The expression levels of ESBLs-enconding genes blaTEM and blaCTX-M-14 in Δpk1 were significantly down-regulated compared with UE210113, but the expression was not restored in Δpk1-C. The expression of outer membrane protein gene omp F in Δpk1 was significantly up-regulated, while the expression of omp A and omp C were down-regulated. The results showed that the expression of multidrug efflux systems encoding genes tol C, mdt A and mdtG were down-regulated in Δpk1 compared with UE210113. The expression of all of the outer membrane protein genes and the multidrug efflux systems genes were restored in Δpk1-C. In conclusion,the lost of ppk1 gene can affect the expression of the outer membrane protein and multidrug efflux systems encoding genes of ESBLs-UPEC, which increase the sensitivity of ESBLs-UPEC to various drugs.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			beta-Lactamases/metabolism*
		                        			;
		                        		
		                        			Uropathogenic Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Urinary Tract Infections
		                        			;
		                        		
		                        			Plasmids
		                        			;
		                        		
		                        			Membrane Proteins/genetics*
		                        			;
		                        		
		                        			Escherichia coli Infections
		                        			;
		                        		
		                        			Microbial Sensitivity Tests
		                        			;
		                        		
		                        			Anti-Bacterial Agents/pharmacology*
		                        			
		                        		
		                        	
8.ToxR represses the synthesis of c-di-GMP in Vibrio parahaemolyticus.
Miaomiao ZHANG ; Xingfan XUE ; Junfang SUN ; Qimin WU ; Xue LI ; Dongsheng ZHOU ; Bin NI ; Renfei LU ; Yiquan ZHANG
Chinese Journal of Biotechnology 2022;38(12):4719-4730
		                        		
		                        			
		                        			Vibrio parahaemolyticus, the main pathogen causing seafood related food poisoning worldwide, has strong biofilm formation ability. ToxR is a membrane binding regulatory protein, which has regulatory effect on biofilm formation of V. parahaemolyticus, but the specific mechanism has not been reported. c-di-GMP is an important second messenger in bacteria and is involved in regulating a variety of bacterial behaviors including biofilm formation. In this study, we investigated the regulation of ToxR on c-di-GMP metabolism in V. parahaemolyticus. Intracellular c-di-GMP in the wild type (WT) and toxR mutant (ΔtoxR) strains were extracted by ultrasonication, and the concentrations of c-di-GMP were then determined by enzyme linked immunosorbent assay (ELISA). Three c-di-GMP metabolism-related genes scrA, scrG and vpa0198 were selected as the target genes. Quantitative real-time PCR (q-PCR) was employed to calculate the transcriptional variation of each target gene between WT and ΔtoxR strains. The regulatory DNA region of each target gene was cloned into the pHR309 plasmid harboring a promoterless lacZ gene. The recombinant plasmid was subsequently transferred into WT and ΔtoxR strains to detect the β-galactosidase activity in the cellular extracts. The recombinant lacZ plasmid containing each of the target gene was also transferred into E. coli 100λpir strain harboring the pBAD33 plasmid or the recombinant pBAD33-toxR to test whether ToxR could regulate the expression of the target gene in a heterologous host. The regulatory DNA region of each target gene was amplified by PCR, and the over-expressed His-ToxR was purified. The electrophoretic mobility shift assay (EMSA) was applied to verify whether His-ToxR directly bound to the target promoter region. ELISA results showed that the intracellular c-di-GMP level significantly enhanced in ΔtoxR strain relative to that in WT strain, suggesting that ToxR inhibited the production of c-di-GMP in V. parahaemolyticus. qPCR results showed that the mRNA levels of scrA, scrG and vpa0198 significantly increased in ΔtoxR strain relative to those in WT strain, suggesting that ToxR repressed the transcription of scrA, scrG and vpa0198. lacZ fusion assay showed that ToxR was able to repress the promoter activities of scrA, scrG and vpa0198 in both V. parahaemolyticus and E. coli 100λpir. EMSA results showed that His-ToxR was able to bind to the regulatory DNA regions of scrA and scrG, but not to the regulatory DNA region of vpa0198. In conclusion, ToxR inhibited the production of c-di-GMP in V. parahaemolyticus via directly regulating the transcription of enzyme genes associated with c-di-GMP metabolism, which would be beneficial for V. parahaemolyticus to precisely control bacterial behaviors including biofilm formation.
		                        		
		                        		
		                        		
		                        			Vibrio parahaemolyticus/metabolism*
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Bacterial Proteins/metabolism*
		                        			;
		                        		
		                        			Transcription Factors/genetics*
		                        			;
		                        		
		                        			Gene Expression Regulation, Bacterial
		                        			
		                        		
		                        	
9.Research progress of c-di-GMP in the regulation of Escherichia coli biofilm.
Yunjiang HE ; Weijuan JIA ; Shanshan CHI ; Qinglei MENG ; Yunjiao CHEN ; Xueli WANG
Chinese Journal of Biotechnology 2022;38(8):2811-2820
		                        		
		                        			
		                        			Escherichia coli biofilm is a complex membrane aggregation produced by the adhesion and secretion of extracellular polymeric substances by E. coli cells aggregated on specific media. Pathogenic E. coli will evade the immune system and the impact of various harmful factors in the environment after the formation of biofilm, causing sustained and even fatal damage to the host. Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger ubiquitous in bacteria and plays a crucial role in regulating biofilm formation. This paper reviewed the recent studies about the role of c-di-GMP in the movement, adhesion, and EPS production mechanism of E. coli during biofilm formation, aiming to provide a basis for inhibiting E. coli biofilm from the perspective of c-di-GMP.
		                        		
		                        		
		                        		
		                        			Bacterial Proteins/genetics*
		                        			;
		                        		
		                        			Biofilms
		                        			;
		                        		
		                        			Cyclic GMP/analogs & derivatives*
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Escherichia coli Proteins/metabolism*
		                        			;
		                        		
		                        			Gene Expression Regulation, Bacterial
		                        			
		                        		
		                        	
10.Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Perilla frutescens.
Yali ZHOU ; Xusheng HUANG ; Yueru HAO ; Guiping CAI ; Xianfei SHI ; Runzhi LI ; Jiping WANG
Chinese Journal of Biotechnology 2022;38(8):3014-3028
		                        		
		                        			
		                        			Perilla (Perilla frutescens L.) is an important edible-medicinal oil crop, with its seed containing 46%-58% oil. Of perilla seed oil, α-linolenic acid (C18:3) accounts for more than 60%. Lysophosphatidic acid acyltransferase (LPAT) is one of the key enzymes responsible for triacylglycerol assembly in plant seeds, controlling the metabolic flow from lysophosphatidic acid to phosphatidic acid. In this study, the LPAT2 gene from the developing seeds of perilla was cloned and designated as PfLPAT2. The expression profile of PfLPAT2 gene was examined in various tissues and different seed development stages of perilla (10, 20, 30, and 40 days after flowering, DAF) by quantitative real-time PCR (qRT-PCR). In order to detect the subcellular localization of PfLPAT2 protein, a fusion expression vector containing PfLPAT2 and GFP was constructed and transformed into Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration. In order to explore the enzymatic activity and biological function of PfLPAT2 protein, an E. coli expression vector, a yeast expression vector and a constitutive plant overexpression vector were constructed and transformed into an E. coli mutant SM2-1, a wild-type Saccharomyces cerevisiae strain INVSc1, and a common tobacco (Nicotiana tabacum, variety: Sumsun NN, SNN), respectively. The results showed that the PfLPAT2 open reading frame (ORF) sequence was 1 155 bp in length, encoding 384 amino acid residues. Functional structure domain prediction showed that PfLPAT2 protein has a typical conserved domain of lysophosphatidic acid acyltransferase. qRT-PCR analysis indicated that PfLPAT2 gene was expressed in all tissues tested, with the peak level in seed of 20 DAF of perilla. Subcellular localization prediction showed that PfLPAT2 protein is localized in cytoplasm. Functional complementation assay of PfLPAT2 in E. coli LPAAT mutant (SM2-1) showed that PfLPAT2 could restore the lipid biosynthesis of SM2-1 cell membrane and possess LPAT enzyme activity. The total oil content in the PfLPAT2 transgenic yeast was significantly increased, and the content of each fatty acid component changed compared with that of the non-transgenic control strain. Particularly, oleic acid (C18:1) in the transgenic yeast significantly increased, indicating that PfLPAT2 has a higher substrate preference for C18:1. Importantly, total fatty acid content in the transgenic tobacco leaves increased by about 0.42 times compared to that of the controls, with the C18:1 content doubled. The increased total oil content and the altered fatty acid composition in transgenic tobacco lines demonstrated that the heterologous expression of PfLPAT2 could promote host oil biosynthesis and the accumulation of health-promoting fatty acids (C18:1 and C18:3). This study will provide a theoretical basis and genetic elements for in-depth analysis of the molecular regulation mechanism of perilla oil, especially the synthesis of unsaturated fatty acids, which is beneficial to the genetic improvement of oil quality of oil crops.
		                        		
		                        		
		                        		
		                        			Acyltransferases
		                        			;
		                        		
		                        			Cloning, Molecular
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Fatty Acids
		                        			;
		                        		
		                        			Perilla frutescens/metabolism*
		                        			;
		                        		
		                        			Plant Oils
		                        			;
		                        		
		                        			Plant Proteins/metabolism*
		                        			;
		                        		
		                        			Saccharomyces cerevisiae/metabolism*
		                        			;
		                        		
		                        			Seeds/chemistry*
		                        			;
		                        		
		                        			Tobacco/genetics*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail