1.Expression of GATA1 in bronchial asthma and its effect on the transcription regulation of the ORMDL3 gene.
Hu CHEN ; Jiao-Jiao LI ; Yue YUAN ; Rui JIN
Chinese Journal of Contemporary Pediatrics 2025;27(2):212-218
OBJECTIVES:
To study the expression of the transcription factor GATA1 in bronchial asthma (referred to as asthma) and its effect on the expression level of the asthma susceptibility gene orosomucoid 1-like protein 3 (ORMDL3), along with the underlying molecular mechanisms.
METHODS:
The study included 28 cases of moderate asthma, 46 cases of severe asthma, and 12 normal controls from the Gene Expression Omnibus (GEO) database. The mRNA expression levels of GATA1 and ORMDL3 were analyzed among the asthma patients and the normal controls, including their correlation. The pGL-185/58 plasmid was co-transfected with GATA1 gene siRNA (si-GATA1 group) and siRNA negative control (si-control group) into BEAS-2B cells. Bioinformatics methods were used to predict GATA1 binding sites in the promoter region of the ORMDL3 gene. The dual-luciferase reporter gene system was employed to assess the promoter activity of ORMDL3, while real-time quantitative PCR and Western blotting were used to measure the mRNA and protein expression levels of GATA1 and ORMDL3. Chromatin immunoprecipitation (ChIP) assays were conducted to determine whether GATA1 binds to the promoter region of ORMDL3.
RESULTS:
The expression levels of GATA1 and ORMDL3 mRNA were significantly higher in the severe asthma group compared to the normal control group (P<0.001). Positive correlations were observed between GATA1 mRNA and ORMDL3 mRNA expression levels in both the moderate and severe asthma groups (r=0.636 and 0.341, respectively; P<0.05). In BEAS-2B cells, the dual-luciferase reporter assay revealed that ORMDL3 promoter luciferase activity, as well as ORMDL3 mRNA and protein expression levels, were lower in the si-GATA1 group compared to the si-control group (P<0.05). ChIP assay results demonstrated that GATA1 could bind to the promoter region of ORMDL3.
CONCLUSIONS
The expression of GATA1 is increased in asthma patients, which may regulate the promoter activity and expression of the asthma susceptibility gene ORMDL3.
Humans
;
Asthma/etiology*
;
GATA1 Transcription Factor/analysis*
;
Membrane Proteins/physiology*
;
Male
;
Female
;
Promoter Regions, Genetic
;
Child
;
Transcription, Genetic
;
Gene Expression Regulation
;
Adolescent
;
RNA, Messenger/analysis*
2.Relationships between Molecular Genetics and Clinical Features of Children with Acute Myeloid Leukemia.
Fei LONG ; Hao XIONG ; Li YANG ; Ming SUN ; Zhi CHEN ; Wen-Jie LU ; Shan-Shan QI ; Fang TAO ; Lin-Lin LUO ; Jing-Pei CHEN
Journal of Experimental Hematology 2025;33(1):69-74
OBJECTIVE:
To analyze the molecular genetic spectrum of children with acute myeloid leukemia (AML), and explore its correlation with clinical characteristics and prognosis.
METHODS:
The clinical and molecular genetic data of 116 children with newly diagnosed AML in Wuhan Children's Hospital from September 2015 to August 2022 were retrospectively analyzed. The Fisher's exact test was used to analyze the correlation of gene mutations with clinical features, and Kaplan-Meier curve was used to analyze the influences of gene mutations on the prognosis.
RESULTS:
NRAS (22%), KRAS (14.9%), and KIT (14.7%) mutations were the most common genetic abnormalities in 116 children with AML. Children with KIT, CEBPA and GATA2 mutations showed a higher median onset-age than those without mutations (all P < 0.05). Children with FLT3-ITD mutation exhibited a higher white blood cell count at initial diagnosis compared to those without mutations (P < 0.05). Children with ASXL2 mutation had lower platelet count and hemoglobin at initial diagnosis than those without mutations (both P < 0.05). KIT mutations were often co-occurred with t(8;21)(q22;q22). There was no significant relationship between gene mutation and minimal residual disease (MRD) remission rate after the first and second induction therapy (P >0.05). KIT and NRAS mutations were not associated with prognosis significantly (P >0.05). The overall survival (OS) rates of children with CEBPA and FLT3-ITD mutations were superior to those without mutations, but the differences were not statistically significant (P >0.05). The 3-year OS rate of 61 children treated by allogeneic hematopoietic stem cell transplantation was 89.8%, which was significantly higher than 55.2% of those only treated by chemotherapy (P < 0.001).
CONCLUSIONS
Gene mutations are common in children with AML, and next-generation sequencing can significantly improve the detection rate of gene mutations, which can guide the risk stratification therapy. In addition, FLT3-ITD and KIT mutations may no longer be poor prognostic factors.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Mutation
;
Prognosis
;
Retrospective Studies
;
fms-Like Tyrosine Kinase 3/genetics*
;
Child
;
Proto-Oncogene Proteins c-kit/genetics*
;
Male
;
Female
;
CCAAT-Enhancer-Binding Proteins/genetics*
;
Membrane Proteins/genetics*
;
Child, Preschool
;
Adolescent
;
GATA2 Transcription Factor/genetics*
;
GTP Phosphohydrolases/genetics*
;
Proto-Oncogene Proteins p21(ras)/genetics*
3.Liujunzi Decoction Regulated Intestinal Flora Homeostasis to Relieve Lung-Gut Axis Inflammation in Asthma Flora Disorder Mice: Possibly Related to GATA3/ILC2.
Wen-Ting XU ; Qi WANG ; Xin-Yu WU ; Jing-Han HUANG ; Jing WANG
Chinese journal of integrative medicine 2025;31(11):1001-1010
OBJECTIVE:
To explore the effects and mechanism of Chinese medicine Liujunzi Decoction (LJZD) on regulating microbial flora in mice with asthma flora disorder.
METHODS:
Thirty BALB/c female mice were divided into control, model, LJZD [3.5 g/(kg•d), by gavage], dexamethasone [DXMS, 0.7 mg/(kg•d), intraperitoneal injection], and Clostridium butyricum [CB, 230 mg/(kg•d), by gavage] groups according to a random number table, 6 mice in each group. The asthma flora disorder mice model was induced with ovalbumin (OVA). Lung and gut lesions were analyzed by hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) stainings. The secretory immunoglobulin A (sIgA) protein expression in lung and gut tissues was detected by Western blot. Flow cytometry was used to detect the relative counts of GATA binding protein 3 (GATA3)/type 2 innate lymphoid cells (ILC2) in lung and gut. The levels of inflammatory factors in lung and gut tissues were detected by enzyme-linked immunosorbent assay (ELISA). Chao1 and Shannon index were used to compare microbial abundance and diversity in alveolar lavage fluid and cecal contents. The similarity or difference in the composition of mice microbial communities was analyzed through cluster analysis. The serum short-chain fatty acids (SCFAs) content was detected by ultra performance liquid chromatograph mass spectrometer (LC-MS)/MS.
RESULTS:
The asthma flora disorder model mice showed obvious asthma-related symptoms, but LJZD treatment effectively alleviated these symptoms. LJZD restored alveolar wall thickening, airway inflammatory cell infiltration, gut tissue structure destruction, and inflammatory cell infiltration in asthma flora disorder mice. LJZD downregulated the sIgA protein expression in mice (P<0.05). Moreover, LJZD decreased the activation of GATA3/ILC2s in lung and gut tissue (P<0.01), and reduced the levels of interleukin (IL)-5, IL-33, IL-25, IL-9 and IL-13 (P<0.01). LJZD treatment returned the abundance of microbial species and the microbial community structure of alveolar lavage fluid and cecal content in asthma flora disorder mice to the normal state. The SCFAs content and body metabolism were also improved.
CONCLUSION
LJZD exerted anti-asthmatic effects by improving the microbial balance of lung-gut axis and affecting systemic metabolism, consequently regulating the GATA3/ILC2s axis to impact the lung inflammatory response.
Animals
;
Asthma/pathology*
;
GATA3 Transcription Factor/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Gastrointestinal Microbiome/drug effects*
;
Mice, Inbred BALB C
;
Female
;
Lung/drug effects*
;
Homeostasis/drug effects*
;
Inflammation/pathology*
;
Lymphocytes/drug effects*
;
Mice
4.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
5.Effect of LncRNA GATA3-AS1 Targeting MiR-515-5p on Cell Proliferation and Apoptosis in Childhood Acute Lymphoblastic Leukemia Cells.
Yan QIN ; Xue-Xue YUN ; Zhong-Mei ZHENG ; Qian XU ; Li-Min ZUO
Journal of Experimental Hematology 2023;31(4):1032-1037
OBJECTIVE:
To investigate the effects of long non-coding RNA (lncRNA) GATA3 antisense RNA 1 (GATA3-AS1) targeting miR-515-5p on the proliferation and apoptosis of childhood acute lymphoblastic leukemia (ALL) cells.
METHODS:
RT-qPCR was used to determine the expression of GATA3-AS1 and miR-515-5p in the plasma of controls and ALL children. Human ALL cells Jurkat were divided into si-GATA3-AS1, si-NC, miR-NC, miR-515-5p, si-GATA3-AS1+anti-miR-NC and si-GATA3-AS1+anti-miR-515-5p groups. CCK-8 assay was used to detect the cell proliferation, and flow cytometry was used to detect the cell apoptosis. The targeting relationship between GATA3-AS1 and miR-515-5p was determined by dual-luciferase reporter assay.
RESULTS:
The expression level of GATA3-AS1 in the plasma of ALL children was significantly higher than that of controls (P <0.001), while the expression level of miR-515-5p was significantly lower than that of controls (P <0.001). Compared with the si-NC group, the cell inhibition rate, apoptosis rate, and miR-515-5p expression level in si-GATA3-AS1 group were significantly increased (P <0.001). Compared with the miR-NC group, the cell inhibition rate and apoptosis rate in miR-515-5p group were significantly increased (P <0.001). GATA3-AS1 could directly and specifically bind to miR-515-5p. Compared with the si-GATA3-AS1+anti-miR-NC group, the cell inhibition rate and apoptosis rate in si-GATA3-AS1+anti-miR-515-5p group were significantly decreased (P <0.001).
CONCLUSION
Down-regulation of GATA3-AS1 can inhibit proliferation and induce apoptosis of childhood ALL cells by targeting up-regulation of miR-515-5p expression.
Child
;
Humans
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Antagomirs/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Apoptosis
;
Gene Expression Regulation, Neoplastic
;
GATA3 Transcription Factor/metabolism*
6.Changes in percentage of GATA3+ regulatory T cells and their pathogenic roles in allergic rhinitis.
Liu SUN ; Wo Er JIAO ; Yong Kong KONG ; Chang Liang YANG ; Shan XU ; Yue Long QIAO ; Shi Ming CHEN
Journal of Southern Medical University 2023;43(2):280-286
OBJECTIVE:
To investigate the changes in percentage of GATA3+ regulatory T (Treg) cells in patients with allergic rhinitis (AR) and mouse models.
METHODS:
The nasal mucosa specimens were obtained from 6 AR patients and 6 control patients for detection of nasal mucosal inflammation. Peripheral blood mononuclear cells (PBMC) were collected from 12 AP patients and 12 control patients to determine the percentages of Treg cells and GATA3+ Treg cells. In a C57BL/6 mouse model of AR, the AR symptom score, peripheral blood OVA-sIgE level, and nasal mucosal inflammation were assessed, and the spleen of mice was collected for detecting the percentages of Treg cells and GATA3+ Treg cells and the expressions of Th2 cytokines.
RESULTS:
Compared with the control patients, AR patients showed significantly increased eosinophil infiltration and goblet cell proliferation in the nasal mucosa (P < 0.01) and decreased percentages of Treg cells and GATA3+ Treg cells (P < 0.05). The mouse models of AR also had more obvious allergic symptoms, significantly increased OVA-sIgE level in peripheral blood, eosinophil infiltration and goblet cell hyperplasia (P < 0.01), markedly lowered percentages of Treg cells and GATA3+ Treg cells in the spleen (P < 0.01), and increased expressions of IL-4, IL-6 and IL-10 (P < 0.05).
CONCLUSION
The percentage of GATA3+ Treg cells is decreased in AR patients and mouse models. GATA3+ Treg cells possibly participate in Th2 cell immune response, both of which are involved in the occurrence and progression of AR, suggesting the potential of GATA3+ Treg cells as a new therapeutic target for AR.
Animals
;
Mice
;
Cytokines/metabolism*
;
Disease Models, Animal
;
GATA3 Transcription Factor
;
Inflammation
;
Leukocytes, Mononuclear/metabolism*
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Nasal Mucosa/metabolism*
;
Ovalbumin
;
Rhinitis, Allergic/therapy*
;
T-Lymphocytes, Regulatory
;
Th2 Cells/metabolism*
;
Humans
7.Targeting GATA1 and p2x7r Locus Binding in Spinal Astrocytes Suppresses Chronic Visceral Pain by Promoting DNA Demethylation.
Yan-Yan WU ; Hai-Long ZHANG ; Xiaomin LU ; Han DU ; Yong-Chang LI ; Ping-An ZHANG ; Guang-Yin XU
Neuroscience Bulletin 2022;38(4):359-372
Irritable bowel syndrome is a gastrointestinal disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that injury and inflammation during the neonatal period have long-term effects on tissue structure and function in the adult that may predispose to gastrointestinal diseases. In this study we aimed to investigate how the epigenetic regulation of DNA demethylation of the p2x7r locus guided by the transcription factor GATA binding protein 1 (GATA1) in spinal astrocytes affects chronic visceral pain in adult rats with neonatal colonic inflammation (NCI). The spinal GATA1 targeting to DNA demethylation of p2x7r locus in these rats was assessed by assessing GATA1 function with luciferase assay, chromatin immunoprecipitation, patch clamp, and interference in vitro and in vivo. In addition, a decoy oligodeoxynucleotide was designed and applied to determine the influence of GATA1 on the DNA methylation of a p2x7r CpG island. We showed that NCI caused the induction of GATA1, Ten-eleven translocation 3 (TET3), and purinergic receptors (P2X7Rs) in astrocytes of the spinal dorsal horn, and demonstrated that inhibiting these molecules markedly increased the pain threshold, inhibited the activation of astrocytes, and decreased the spinal sEPSC frequency. NCI also markedly demethylated the p2x7r locus in a manner dependent on the enhancement of both a GATA1-TET3 physical interaction and GATA1 binding at the p2x7r promoter. Importantly, we showed that demethylation of the p2x7r locus (and the attendant increase in P2X7R expression) was reversed upon knockdown of GATA1 or TET3 expression, and demonstrated that a decoy oligodeoxynucleotide that selectively blocked the GATA1 binding site increased the methylation of a CpG island in the p2x7r promoter. These results demonstrate that chronic visceral pain is mediated synergistically by GATA1 and TET3 via a DNA-demethylation mechanism that controls p2x7r transcription in spinal dorsal horn astrocytes, and provide a potential therapeutic strategy by targeting GATA1 and p2x7r locus binding.
Animals
;
Astrocytes/metabolism*
;
DNA Demethylation
;
Epigenesis, Genetic
;
GATA1 Transcription Factor/metabolism*
;
Inflammation/metabolism*
;
Oligodeoxyribonucleotides/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Purinergic P2X7/metabolism*
;
Visceral Pain/metabolism*
8.Effect of MiR-451a on Erythroid Differentiation of K562 Cells under Hypoxia.
Cai-Yan HU ; Hui-Jie ZHANG ; Cheng-Bing FU ; Fang LIU
Journal of Experimental Hematology 2020;28(6):2071-2078
OBJECTIVE:
To investigate the changes of GATA-1 protein expression during erythroid differentiation of K562 cells under hypoxia and how GATA-1 can regulate erythroid differentiation by up-regulating the expression of miR-451a and inhibiting the expression of 14-3-3ζ.
METHODS:
K562 cells were divided into 2 groups: the normoxia group and the hypoxia group, after the induction of hemin for 96 h, the positive cells rate of the benzidine staining, the mRNA expression of γ-globin and the expression of CD235a were detected, and the success of the model was verified. The changes of GATA-1 and miR-451a expression in the above-mentioned 2 groups, the changes of miR-451a expression after over-expressed GATA-1 were detected by Western blot and qRT-PCR. The cells in normoxic group and hypoxia group were divided into negative control group (NC group) and miR-451a over-expression group respectively, and the degree of erythroid differentiation in the four groups was judged according to the corresponding erythroid differentiation indexes, and the expression of 14-3-3ζ was detected by Western blot after over-expressed miR-451a.
RESULTS:
The positive cell rate of benzidine staining, mRNA expression of γ-globin and the expression of CD235a after 96 h induction by K562 cells under hypoxia were significantly higher than 0 h, suggesting that the erythroid differentiation model of K562 cells under hypoxia was replicated successfully. The expression levels of GATA-1 protein and miR-451a in the hypoxic group were significantly higher than that in the normoxic group (P<0.05). The expression level of miR-451a in hypoxia group was significantly higher than that in NC group after overexpressed GATA-1 (P<0.05). After over-expressed of miR-451a under hypoxia, the positive cell rate of benzidine staining, the mRNA expression level of γ-globin and the expression of CD235a were significantly higher than those in NC group (P<0.05). The expression level of 14-3-3ζ protein in miR-451a over-expressed group was lower than that in NC group under hypoxia (P<0.05).
CONCLUSION
Hypoxia can significantly increase the expression of GATA-1 protein, and the increase of GATA-1 expression can up-regulate the expression of miR-451a, thereby inhibiting the expression of 14-3-3ζ protein, which hinders the cell proliferation in erythroid differentiation model of K562 cells and plays an important role in promoting erythroid differentiation.
14-3-3 Proteins
;
Cell Differentiation
;
Erythroid Cells/metabolism*
;
GATA1 Transcription Factor/metabolism*
;
Humans
;
Hypoxia
;
K562 Cells
;
MicroRNAs/genetics*
9.Luteolin and luteolin-7-O-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GalN/LPS-induced hepatitic ICR mice
Chung Mu PARK ; Young Sun SONG
Nutrition Research and Practice 2019;13(6):473-479
BACKGROUND/OBJECTIVES: Anti-inflammatory and antioxidative activities of luteolin and luteolin-7-O-glucoside were compared in galactosamine (GalN)/lipopolysaccharide (LPS)-induced hepatitic ICR mice. MATERIALS/METHODS: Male ICR mice (6 weeks old) were divided into 4 groups: normal control, GalN/LPS, luteolin, and luteolin-7-O-glucoside groups. The latter two groups were administered luteolin or luteolin-7-O-glucoside (50 mg/kg BW) daily by gavage for 3 weeks after which hepatitis was induced by intraperitoneal injection of GalN and LPS (1 g/kg BW and 10 µg/kg BW, respectively). RESULTS: GalN/LPS produced acute hepatic injury by a sharp increase in serum AST, ALT, and TNF-α levels, increases that were ameliorated in the experimental groups. In addition, markedly increased expressions of cyclooxygenase (COX)-2 and its transcription factors, nuclear factor (NF)-κB and activator protein (AP)-1, were also significantly attenuated in the experimental groups. Compared to luteolin-7-O-glucoside, luteolin more potently ameliorated the levels of inflammatory mediators. Phase II enzymes levels and NF-E2 p45-related factor (Nrf)-2 activation that were decreased by GalN/LPS were increased by luteolin and luteolin-7-O-glucoside administration. In addition, compared to luteolin, luteolin-7-O-glucoside acted as a more potent inducer of changes in phase II enzymes. Liver histopathology results were consistent with the mediator and enzyme results. CONCLUSION: Luteolin and luteolin-7-O-glucoside protect against GalN/LPS-induced hepatotoxicity through the regulation of inflammatory mediators and phase II enzymes.
Animals
;
Galactosamine
;
Hepatitis
;
Humans
;
Inflammation
;
Injections, Intraperitoneal
;
Liver
;
Luteolin
;
Male
;
Mice
;
Mice, Inbred ICR
;
NF-E2-Related Factor 2
;
NF-kappa B
;
Prostaglandin-Endoperoxide Synthases
;
Transcription Factors
10.Clinical and molecular characteristics of GATA2 related pediatric primary myelodysplastic syndrome.
Wen Bin AN ; Chao LIU ; Yang WAN ; Xiao Yan CHEN ; Ye GUO ; Xiao Juan CHEN ; Wen Yu YANG ; Yu Mei CHEN ; Ying Chi ZHANG ; Xiao Fan ZHU
Chinese Journal of Hematology 2019;40(6):477-483
Objective: To clarify the prevalence, clinical features and molecular characteristics of germline GATA2 mutations in pediatric primary myelodysplastic syndromes (MDS) . Methods: Next-generation sequencing technology was used to detect mutations in GATA2 and other myeloid malignancy genes in 129 children with primary MDS from Jan. 2007 to Jan. 2018. The relationship between genotypes and phenotypes was analyzed. Results: Germline GATA2 mutations accounted for 8.5% (11/129) of all primary MDS cases, and 14.0% (11/50) of MDS with excess blasts (MDS-EB) and acute myeloid leukaemia with myelodysplasia-related changes (AML-MRC) . Compared with GATA2 wild-type patients, GATA2 mutated patients were older at diagnosis[8 (1-16) years old vs 6 years old (range: 1 month old-18 years old) , P=0.035]and higher risk of monosomy 7 (72.7%vs 5.2%, P<0.001) and classified into MDS-EB and AML-MRC compared with refractory cytopenia of childhood (RCC) (63.6%vs 36.4%, P=0.111) . The multivariate analysis showed SETBP1 mutation (P=0.041, OR=9.003, 95%CI 1.098-73.787) and isolated monosomy 7 (P=0.002, OR=24.835, 95%CI 3.305-186.620) were significantly associated with germline mutated GATA2. Overall survival (OS) and outcomes of hematopoietic stem cell transplantation (HSCT) were not influenced by GATA2 mutational status. Conclusions: Our data identify germline GATA2 mutations have a high prevalence in older pediatric patients with monosomy 7, and high risk of progression into advanced MDS subtypes. GATA2 mutation status does not affect OS in pediatric primary MDS.
Adolescent
;
Child
;
Child, Preschool
;
GATA2 Transcription Factor/genetics*
;
Germ-Line Mutation
;
Hematopoietic Stem Cell Transplantation
;
Humans
;
Infant
;
Leukemia, Myeloid, Acute
;
Myelodysplastic Syndromes/genetics*

Result Analysis
Print
Save
E-mail