1.Research progress on anti-tumor effects and mechanisms of triptolide and its combined application.
Jin-Feng SHI ; Yao-Yao LUO ; Jia-Xin LI ; Rui-Feng LUO ; Liang CHEN ; Jie LI ; Jin-Ming ZHANG ; Chao-Mei FU
China Journal of Chinese Materia Medica 2019;44(16):3391-3398
		                        		
		                        			
		                        			Tumors are major chronic diseases and seriously threaten human health all over the world. How to effectively control and cure tumors is one of the most pivotal problems in the medical field. At present,surgery,radiotherapy and chemotherapy are still the main treatment methods. However,the side effects of radiotherapy and chemotherapy cannot be underestimated. Therefore,it is of great practical significance to find new anti-cancer drugs with low toxicity,high efficiency and targeting to cancer cells. With the increasing incidence of tumor,the anti-tumor effect of traditional Chinese medicine has increasingly become a research hotspot. Triptolide,which is a natural diterpenoid active ingredient derived from of Tripterygium wilfordii,as one of the highly active components,has anti-inflammatory,immunosuppressive,anti-tumor and other multiple effects. A large number of studies have confirmed that it has good anti-tumor activity against various tumors in vivo and in vitro. It can play an anti-tumor role by inhibiting the proliferation of cancer cells,inducing apoptosis of cancer cells,inducing autophagy of cancer cells,blocking the cell cycle,inhibiting the migration,invasion and metastasis of cancer cells,reversing multidrug resistance,mediating tumor immunity and inhibiting angiogenesis. On the basis of literatures,this paper reviews the anti-tumor effect and mechanism of triptolide,and analyzes the current situation of triptolide combined with other chemotherapy drugs,in order to promote deep research and better clinical application about triptolide.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents, Phytogenic
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			Cell Cycle Checkpoints
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Epoxy Compounds
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Phenanthrenes
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
2.Research progress on triptolide functionalized nanoparticulate drug delivery systems for tumor treatment.
Yao-Yao LUO ; Jin-Feng SHI ; Liang CHEN ; Jia-Xin LI ; Xiu-Ying MA ; Jin-Ming ZHANG ; Fu-Neng GENG
China Journal of Chinese Materia Medica 2019;44(21):4566-4572
		                        		
		                        			
		                        			Nowadays,the advantages of traditional Chinese medicine(TCM) for treatment of tumors are increasingly prominent.Triptolide shows wide-spectrum and highly effective anti-tumor activity. Moreover,nano-carrier-based triptolide drug delivery system is more powerful in improving water solubility and pharmacokinetic behavior of the drug,but it is easy to cause toxic and side effects that should not be neglected on human body. Because of tumor vascular heterogeneity and PEGylation dilemma,nanoparticulate drug delivery systems need to overcome multiple physiological and pathological barriers from drug administration to functioning. It is difficult for traditional triptolide nanoparticulate drug delivery systems to achieve active accumulation of nano-drug in tumor tissues and specific drug release in tumor target site solely relying on enhanced permeability and retention effect of solid tumor,limiting their application and clinical transformation in treatment of tumors. Based on the traditional nano-preparation system,the new functionalized nano-drug delivery system further enhances the nano-drug enrichment,penetration and controlled release at the tumor sites,which is of great significance in improving bioavailability,anti-tumor efficacy and reducing the side effects of drugs. In this paper,we summarized and analyzed the researches on new triptolide functionalized nano-drug delivery system from four perspectives,including tumor active targeting,tumor microenvironment response,polymer-drug conjugates,and multidrug co-delivery for tumor treatment,expecting to provide ideas for in-depth research and clinical application of triptolide and some other active anti-tumor TCM ingredients.
		                        		
		                        		
		                        		
		                        			Diterpenes/chemistry*
		                        			;
		                        		
		                        			Drug Delivery Systems
		                        			;
		                        		
		                        			Epoxy Compounds/chemistry*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Nanoparticles
		                        			;
		                        		
		                        			Phenanthrenes/chemistry*
		                        			
		                        		
		                        	
3.The role of neutrophils in triptolide-induced liver injury.
Xin-Zhi WANG ; Shen-Ye ZHANG ; Yao XU ; Lu-Yong ZHANG ; Zhen-Zhou JIANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(9):653-664
		                        		
		                        			
		                        			Triptolide (TP) induces severe liver injury, but its hepatotoxicity mechanisms are still unclear. Inflammatory responses may be involved in the pathophysiology. Neutrophils are the first-line immune effectors for sterile and non-sterile inflammatory responses. Thus, the aim of the present study was to investigate the neutrophilic inflammatory response in TP-induced liver injury in C57BL/6 mice. Our results showed that neutrophils were recruited and accumulated in the liver, which was parallel to or slightly after the development of liver injury. Neutrophils induced release of myeloperoxidase and up-regulation of CD11b, which caused cytotoxicity and hepatocyte death. Hepatic expressions of CXL1, TNF-α, IL-6, and MCP1 were increased significantly to regulate neutrophils recruitment and activation. Up-regulation of toll like receptors 4 and 9 also facilitated neutrophils infiltration. Moreover, neutrophils depletion using an anti-Gr1 antibody showed mild protection against TP overdose. These results indicated that neutrophils accumulation might be the secondary response, not the cause of TP-induced liver injury. In conclusion, the inflammatory response including neutrophil infiltration may play a role in TP-induced hepatotoxicity, but may not be severe enough to cause additional liver injury.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chemical and Drug Induced Liver Injury
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Chemokine CCL2
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Epoxy Compounds
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Intracellular Signaling Peptides and Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Neutrophil Infiltration
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Neutrophils
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Phenanthrenes
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
4.Atractylodes lancea rhizome water extract reduces triptolide-induced toxicity and enhances anti-inflammatory effects.
Yuan WEI ; Dan-Juan SUI ; Hai-Miao XU ; Zhen OUYANG ; Na WU ; Du-Jun WANG ; Xiao-Yan ZHANG ; Da-Wei QIAN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):905-911
		                        		
		                        			
		                        			The present study was designed to explore the influence of water extracts of Atractylodes lancea rhizomes on the toxicity and anti-inflammatory effects of triptolide (TP). A water extract was prepared from A. lancea rhizomes and co-administered with TP in C57BL/6 mice. The toxicity was assayed by determining serum biochemical parameters and visceral indexes and by liver histopathological analysis. The hepatic CYP3A expression levels were detected using Western blotting and RT-PCR methods. The data showed that the water extract of A. lancea rhizomes reduced triptolide-induced toxicity, probably by inducing the hepatic expression of CYP3A. The anti-inflammatory effects of TP were evaluated in mice using a xylene-induced ear edema test. By comparing ear edema inhibition rates, we found that the water extract could also increase the anti-inflammatory effects of TP. In conclusion, our results suggested that the water extract of A. lancea rhizomes, used in combination with TP, has a potential in reducing TP-induced toxicity and enhancing its anti-inflammatory effects.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Atractylodes
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Cytochrome P-450 Enzyme System
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Edema
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Enzyme Induction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Epoxy Compounds
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Herb-Drug Interactions
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Phenanthrenes
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Rhizome
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Water
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
5.Triptolide reduces prostate size and androgen level on testosterone-induced benign prostatic hyperplasia in Sprague Dawley rats.
Yu-Rong WANG ; Yuan XU ; Zhen-Zhou JIANG ; Lu-Yong ZHANG ; Tao WANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(5):341-346
		                        		
		                        			
		                        			Benign prostatic hyperplasia (BPH) is an age-related disease of unknown etiology, characterized by prostatic enlargement coincident with distinct alterations in tissue histology. In the present study, we investigated whether triptolide can prevent testosterone-induced prostatic hyperplasia in rats. Castration was performed via the scrotal route after urethane aesthesia. BPH was induced in experimental groups by daily subcutaneous injections of testosterone propionate (TP) for two weeks. Triptolide was administered daily by oral gavage at a dose of 100 and 50 μg·kg for 2 weeks, along with the TP injections. On day 14, the animals were humanely killed by cervical dislocation after aesthesia. Prostates were excised, weighed, and used for histological studies. Testosterone and dihydrotestosterone (DHT) levels in serum and prostate were measured. The results showed that triptolide significantly reduced the prostate weight, and the testosterone and DHT levels in both the serum and prostate. Histopathological examination also showed that triptolide treatment suppressed TP-induced prostatic hyperplasia. In conclusion, triptolide effectively inhibits the development of BPH induced by testosterone in a rat model.
		                        		
		                        		
		                        		
		                        			Androgens
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Epoxy Compounds
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Phenanthrenes
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Prostate
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			Prostatic Hyperplasia
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Testosterone
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
6.Reproductive toxicity of triptolide and its mechanism in male rats.
Zheng-jun HUANG ; Hui-qing QUE ; Hua-yi PENG ; Sui LIN ; Shim-min GUO ; Li-ping QIAN
China Journal of Chinese Materia Medica 2015;40(23):4655-4659
		                        		
		                        			
		                        			The arrenotokous toxicity of triptolide was evaluated, and the rate of sperm abnormality, the changes of the lipid peroxide, the enzyme activity and the hormone in male rats were observed. With the negative and positive control group, the healthy rats were respectively given by gavage triptolide suspension at the dose of 0.025, 0.05, 0.1 mg x kg(-1) for 30 days. Then the rats were killed for the measurement of the indicators in testis and serum, as well as the study on the sperm abnormality. The results showed that the positive control group had significant difference, compared with the negative control group. The content of SOD, LDH, G-6-PD, Na+ -K+ -ATPase, Ca+ -Mg+ -ATPase decreased significantly in 0.05 mg x kg(-1) group, and reduced more obviously with exposure to the dose of 0.1 mg x kg(-1). The levels of GSH-Px and beta-G showed a significant decrease in the testis of rats only at the dose of 0.1 mg x kg(-1). Nevertheless, the MDA levels, the FSH levels and the LH levels showed no significant difference. The deformity rate of sperm increased significantly in 0.05 mg x kg(-1) group and 0.1 mg x kg(-1) group. The results indicated the triptolide had the effect of the lipid peroxidation to damage Spermatogenic cells, Sertolis cells and Leydig cells. At the same time, the triptolide interfered not only with the energy supply process of aerobic and anaerobic glycolysis,but also with the energy utilization in testis by affecting the activities of testis marker enzymes, and produced a damage chain of the male reproductive system
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Epoxy Compounds
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Organ Size
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Phenanthrenes
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Reproduction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Spermatozoa
		                        			;
		                        		
		                        			abnormalities
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Testis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			toxicity
		                        			
		                        		
		                        	
7.Effect of triptolide on iNOS and SP expressions in spinal dorsal horn and dorsal root ganglion of rats with adjuvant arthritis.
Wei CHEN ; Xu-Dong ZHANG ; Zhuo-Hui LU ; Deng-Ming WEI
China Journal of Chinese Materia Medica 2014;39(9):1675-1679
OBJECTIVETo observe the analgesic effect of triptolide (TP) of high, middle and low doses on rats with adjuvant arthritis (AA), and the expressions of inducible nitric oxide synthase (iNOS) and substance P (SP) in spinal dorsal horn and dorsal root ganglion (DRG) of corresponding sections, in order to discuss the possible mechanism for the analgesic effect of TP on rats with adjuvant arthritis.
METHODFifty SD rats were selected and randomly divided into the normal group (group A), the model group (group B), and TP low (group C), middle (group D), high (group E) dose groups. Except for the group A, all of the remaining groups were injected with 0.1 mL of Freund's complete adjuvant through their right rear toes to establish the model. At 14 d after the model establishment, rats in C, D and E groups were intraperitoneally injected with different doses of TP (0.1 mg x kg(-1) for the group C, 0.2 mg x kg(-1) for the group D, 0.4 mg x kg(-1) for the group E) once a day for 9 days. Then the 50% mechanical withdraw threshold (MWT) was determined. And the expressions of iNOS and SP in lumbar5 (L5) spinal dorsal horn and DRG were detected with the immunohistochemical method.
RESULTThe 50% MWT of rats in the group B was significantly lower than that of the group A (P < 0.01). After being treated with TP, the Thermal withdrawal latencies of groups C, D and E were significantly higher than that of the group B (P < 0.01). TP could notably increase the MWT of AA rats, with a certain dose-effect relationship. The immunohistochemical results indicated that the iNOS and SP expressions significantly increased in the group B (P < 0.01), while the positive expression levels of iNOS and SP in groups C, D and E were significantly lower than that of the group B (P < 0.01), with a certain dose-effect relationship.
CONCLUSIONTP shows a good analgesic effect on AA, and could inhibit the iNOS and SP expressions in spinal dorsal horn and DRG in rats with adjuvant arthritis, which may be one of action mechanisms for the analgesic effect of TP.
Animals ; Anti-Inflammatory Agents, Non-Steroidal ; pharmacology ; Arthritis, Experimental ; drug therapy ; metabolism ; physiopathology ; Diterpenes ; pharmacology ; Dose-Response Relationship, Drug ; Epoxy Compounds ; pharmacology ; Female ; Ganglia, Spinal ; drug effects ; metabolism ; Immunohistochemistry ; Male ; Nitric Oxide Synthase Type II ; biosynthesis ; Pain Measurement ; methods ; Phenanthrenes ; pharmacology ; Phytotherapy ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Spinal Cord ; drug effects ; metabolism ; Substance P ; biosynthesis ; Time Factors ; Treatment Outcome ; Tripterygium ; chemistry
8.Effects of amino acid on growth and secondary metabolites contents of adventitious roots of Tripterygium wilfordii.
Peng-Fei WEN ; Jia-Min LEI ; Qun LI ; Lei CUI ; Yan LI ; Xing ZHANG
China Journal of Chinese Materia Medica 2014;39(12):2267-2274
		                        		
		                        			
		                        			The adventitious root of Tripterygium wilfordii was used as experiment material to study effects of various concentration of aspartic acid, isoleucine, cysteine and arginine in MS medium on the growth and triptolide, wilforgine, wilforine contents of the adventitious roots. The results showed that compared with the control, supplemented with 0.25 mmol x L(-1) aspartic acid at 3rd week, the growth of the adventitious roots only accounted for 80%, but the content of triptolide of the adventitious roots and the medium was 1.36, 1.30 times, the content of wilforgine was 1.16, 1.37 times, the content of wilforine was 1.22, 1.63 times, respectively. At 3rd week 0.05 mmol x L(-1) isoleucine, the growth of adventitious roots was 97.3%, wilforgine of adventitious roots and medium 1.02, 1.27 times, wilforine 1.36 times and 1.15 times. At 1st week 0.25 mmol x L(-1) cysteine, the growth of the adventitious roots comprised 77.5% of the control, while content of triptolide of adventitious roots reached 1.87 times. At 2nd week 1.00 mmol x L(-1) cysteine, the growth of adventitious roots was 44.6% of the control, the content of wilforine in medium was 2.97 times. At 3rd week 0.50 mmol x L(-1) arginine, the growth of adventitious roots was 124.2%, the content of wilforgine and wilforine was 1.3, 1.4 times, respectively.
		                        		
		                        		
		                        		
		                        			Amino Acids
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Epoxy Compounds
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Lactones
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Phenanthrenes
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Plant Roots
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pyridines
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Secondary Metabolism
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Impairment of triptolide on liver mitochondria in isolated liver mitochondria and HL7702 cell line.
Qiang FU ; Zhen-zhou JIANG ; Lu-yong ZHANG
Chinese journal of integrative medicine 2013;19(9):683-688
OBJECTIVETo observe the impairing effects of triptolide on liver mitochondria in isolated rat-liver mitochondria and human normal liver HL7702 cell line.
METHODSRat-liver mitochondria were isolated from adult female Sprague-Dawley (SD) rats. Liver mitochondria were incubated with 0, 1.25, 2.5, 5 and 10 μmol/L triptolide for detecting mitochondrial swelling and with 0, 2.5, 5 and 10 μmol/L triptolide for mitochondrial permeability transition pore (MPTP) activity. Mitochondrial swelling was estimated by measuring the apparent absorbance change during 600 s in the mitochondrial suspensions at 520 nm with a mitochondrial swelling examining kit. The effect of triptolide on MPTP was determined with a fluorescence detection kit by detecting the fluorescence intensity at an excitation wavelength of 488 nm emitted at 527 nm. Human normal liver HL7702 cells were treated without or with 0.02, 0.1 and 0.5 μmol/L triptolide for 24 h for analyzing mitochondrial transmembrane potential (Δψm) and reactive oxygen species (ROS). Δψm was measured using the fluorescent probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). ROS was measured using fluorescent probe 2',7'-dichlorofluorescin diacetate (DCFH-DA). The cells were harvested and dyed with JC-1 and DCFH-DA, and analyzed by flow cytometry, respectively.
RESULTSIncubation of isolated mitochondria with triptolide results in swollen mitochondria in a concentration-dependent manner. Moreover, triptolide significantly activated mitochondrial permeability transition at 5 and 10 μmol/L (P<0.05 and P<0.01). When HL7702 cells were exposed to a various concentration triptolide for 24 h, mitochondrial membrane depolarization and increase of ROS were caused by triptolide in a concentration-dependent manner. Triptolide significantly induced the mitochondrial membrane depolarization at 0.1 and 0.5 μmol/L (P<0.05 and P<0.01) and the increase of ROS at 0.1 and 0.5 μmol/L (P<0.05 and P<0.01).
CONCLUSIONTriptolide could induce mitochondrial impairment, which may be one of the mechanisms by which hepatotoxicity occurs.
Animals ; Cell Line ; Diterpenes ; chemistry ; pharmacology ; Epoxy Compounds ; chemistry ; pharmacology ; Female ; Humans ; Membrane Potential, Mitochondrial ; drug effects ; Mitochondria, Liver ; drug effects ; metabolism ; Mitochondrial Membrane Transport Proteins ; metabolism ; Mitochondrial Swelling ; drug effects ; Phenanthrenes ; chemistry ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism
10.In vivo effect of triptolide combined with glycyrrhetinic acid on rat cytochrome P450 enzymes.
Feng-Mei HAN ; Zhi-Hong PENG ; Jun-Jun WANG ; Yong CHEN
Acta Pharmaceutica Sinica 2013;48(7):1136-1141
		                        		
		                        			
		                        			Triptolide (TP) is a major active component in Tripterygium root, but its therapeutic window was very narrow due to its severe multi-organ toxicity. In this work, the effect of TP combined with glycyrrhetic acid (GA) on mRNA expression and activity of four cytochrome P450 (CYP) enzymes in rat liver was studied after intragastric administration of TP (0.05, 0.3 and 0.6 mg x kg(-1) x day(-1)) and TP (0.6 mg x kg(-1) x day(-1)) combined with GA (30 mg x kg(-1) x day(-1)) for 7 consecutive days. Compared with the control, the high dose of TP significantly up-regulated the mRNA expression levels of CYP2E1, 1A2, 3A1 and 2C11, the co-administration of TP and GA further up-regulated the mRNA expression levels of CYP3A1, 2C11 and 2E1 as compared with the high dose of TP. Meanwhile, TP at high dose and combined with GA significantly increased CYP3A-associated testosterone 6beta-hydroxylation activity (2.2-fold and 4.1-fold, respectively) as compared with the control. Because TP is mainly metabolized by CYP3A2 in male rats, the present work indicated that TP-induced increase of CYP3A activity might be an important reason for the rapidly metabolic clearance of TP in rat liver, and GA can reduce the hepatotoxicity of TP by promoting its hepatic metabolic clearance. Furthermore, the results also suggest that the drug interactions might be occurred when TP and GA were co-administered with other CYP3A substrate drug.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Aryl Hydrocarbon Hydroxylases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cytochrome P-450 CYP1A2
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cytochrome P-450 CYP2E1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cytochrome P-450 CYP3A
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cytochrome P-450 Enzyme System
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cytochrome P450 Family 2
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Drug Combinations
		                        			;
		                        		
		                        			Drug Interactions
		                        			;
		                        		
		                        			Enzyme Activation
		                        			;
		                        		
		                        			Epoxy Compounds
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Glycyrrhetinic Acid
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Phenanthrenes
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Plant Roots
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Steroid 16-alpha-Hydroxylase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail