1.Progress in shark single-domain antibody.
Chinese Journal of Biotechnology 2020;36(6):1069-1082
Monoclonal antibody (mAb) is an important biological macromolecule and widely used in immune detection, in vitro diagnostics, and drug discovery. However, the inherent properties of mAb restrict its further development, such as high molecular weight and complex structure. Therefore, there is an urgent need to develop alternatives for mAb. Various types of miniaturized antibodies have been developed, among which the variable domain of immunoglobulin new antigen receptor (VNAR) is very attractive. The shark single-domain antibody, also known as shark VNAR, is an antigen-binding domain obtained by genetic engineering technology based on the immunoglobulin new antigen receptor (IgNAR) that naturally exists in selachimorpha. It has a molecular weight of 12 kDa, which is the smallest antigen-binding domain found in the known vertebrates at present. Compared with mAb, the shark VNAR exhibits various superiorities, such as low molecular weight, high affinity, tolerance to the harsh environment, good water solubility, strong tissue penetration, and recognition of the hidden epitopes. It has attracted wide attention in the fields of immunochemical reagents and drug discovery. In this review, various aspects of shark VNAR are elaborated, including the structural and functional characteristics, generating and humanization techniques, affinity maturation strategies, application fields, advantages and disadvantages, and prospects.
Animals
;
Antibodies, Monoclonal
;
immunology
;
Antibodies, Monoclonal, Humanized
;
immunology
;
Antigens
;
Epitopes
;
metabolism
;
Protein Domains
;
immunology
;
Receptors, Antigen
;
chemistry
;
immunology
;
Sharks
2.Efficient Humoral and Cellular Immune Responses Induced by a Chimeric Virus-like Particle Displaying the Epitope of EV71 without Adjuvant.
Pu LIANG ; Yao YI ; Qiu Dong SU ; Feng QIU ; Xue Ting FAN ; Xue Xin LU ; Sheng Li BI
Biomedical and Environmental Sciences 2018;31(5):343-350
OBJECTIVETo eliminate the side effects of aluminum adjuvant and His-tag, we constructed chimeric VLPs displaying the epitope of EV71 (SP70) without His-tagged. Then evaluating whether the VLPs could efficiently evoke not only humoral but also cellular immune responses against EV71 without adjuvant.
METHODSThe fusion protein was constructed by inserting SP70 into the MIR of truncated HBcAg sequence, expressed in E. Coli, and purified through ion exchange chromatography and density gradient centrifugation. Mice were immunized with the VLPs and sera were collected afterwards. The specific antibody titers, IgG subtypes and neutralizing efficacy were detected by ELISA, neutralization assay, and EV71 lethal challenge. IFN-γ and IL-4 secreted by splenocytes were tested by ELISPOT assay.
RESULTSHBc-SP70 proteins can self-assemble into empty VLPs. After immunization with HBc-SP70 VLPs, the detectable anti-EV71 antibodies were effective in neutralizing EV71 and protected newborn mice from EV71 lethal challenge. There was no significant difference for the immune efficacy whether the aluminum adjuvant was added or not. The specific IgG subtypes were mainly IgG1 and IgG2b and splenocytes from the mice immunized produced high levels of IFN-γ and IL-4.
CONCLUSIONThe fusion proteins without His-tagged was expressed and purified as soluble chimeric HBc-SP70 VLPs without renaturation. In the absence of adjuvant, they were efficient to elicit high levels of Th1/Th2 mixed immune response as well as assisted by aluminum adjuvant. Furthermore, the chimeric VLPs have potential to prevent HBV and EV71 infection simultaneously.
Adjuvants, Immunologic ; Animals ; Antibodies, Neutralizing ; Antibodies, Viral ; blood ; Enterovirus A, Human ; genetics ; Enterovirus Infections ; immunology ; virology ; Epitopes ; immunology ; metabolism ; Escherichia coli ; metabolism ; Female ; Immunity, Cellular ; Immunity, Humoral ; Mice ; Recombinant Fusion Proteins ; immunology
3.Identificaiton of Novel Immunogenic Human Papillomavirus Type 16 E7-Specific Epitopes Restricted to HLA-A*33;03 for Cervical Cancer Immunotherapy.
Sunghoon KIM ; Hye Won CHUNG ; Hoon Young KONG ; Jong Baeck LIM
Yonsei Medical Journal 2017;58(1):43-50
PURPOSE: To identify new immunogenic HLA-A*33;03-restricted epitopes from the human papillomavirus (HPV) 16 E7 protein for immunotherapy against cervical cancer. MATERIALS AND METHODS: We synthesized fourteen overlapping 15-amino acid peptides and measured intracellular interferon-γ (IFN-γ) production in PBMC and CD8+ cytotoxic T lymphocytes (CTLs) after sensitization with these peptides using flow cytometry and ELISpot assay. The immunogenicity of epitopes was verified using a ⁵¹Cr release assay with SNU1299 cells. RESULTS: Among the fourteen 15-amino acid peptides, E7₄₉₋₆₃ (RAHYNIVTFCCKCDS) demonstrated the highest IFN-γ production from peripheral blood mononuclear cells (PBMCs), and CD8+ CTLs sensitized with E7₄₉₋₆₃ showed higher cytotoxic effect against SNU1299 cells than did CD8+ CTLs sensitized with other peptides or a negative control group. Thirteen 9- or 10-amino acid overlapping peptides spanning E7₄₉₋₆₃, E7₅₀₋₅₉ (AHYNIVTFCC), and E7₅₂₋₆₁ (YNIVTFCCKC) induced significantly higher IFN-γ production and cytotoxic effects against SNU1299 cells than the other peptides and negative controls, and the cytotoxicity of E7₅₀₋₅₉- and E7₅₂₋₆₁-sensitized PBMCs was induced via the cytolytic effect of CD8+ CTLs. CONCLUSION: We identified E7₅₀₋₅₉ and E7₅₂₋₆₁ as novel HPV 16 E7 epitopes for HLA-A*33;03. CD8+ CTL sensitized with these peptides result in an antitumor effect against cervical cancer cells. These epitopes could be useful for immune monitoring and immunotherapy for cervical cancer and HPV 16-related diseases including anal cancer and oropharyngeal cancer.
Amino Acid Sequence
;
CD8-Positive T-Lymphocytes/immunology/metabolism
;
Epitopes/*immunology/therapeutic use
;
Female
;
*HLA-A Antigens
;
Human papillomavirus 16/*immunology
;
Humans
;
*Immunotherapy
;
Interferon-gamma/analysis/*biosynthesis
;
Leukocytes, Mononuclear/immunology/metabolism
;
T-Lymphocytes, Cytotoxic/immunology/metabolism
;
Uterine Cervical Neoplasms/*therapy
4.A novel M2e-multiple antigenic peptide providing heterologous protection in mice.
Feng WEN ; Ji Hong MA ; Hai YU ; Fu Ru YANG ; Meng HUANG ; Yan Jun ZHOU ; Ze Jun LI ; Xiu Hui WANG ; Guo Xin LI ; Yi Feng JIANG ; Wu TONG ; Guang Zhi TONG
Journal of Veterinary Science 2016;17(1):71-78
Swine influenza viruses (SwIVs) cause considerable morbidity and mortality in domestic pigs, resulting in a significant economic burden. Moreover, pigs have been considered to be a possible mixing vessel in which novel strains loom. Here, we developed and evaluated a novel M2e-multiple antigenic peptide (M2e-MAP) as a supplemental antigen for inactivated H3N2 vaccine to provide cross-protection against two main subtypes of SwIVs, H1N1 and H3N2. The novel tetra-branched MAP was constructed by fusing four copies of M2e to one copy of foreign T helper cell epitopes. A high-yield reassortant H3N2 virus was generated by plasmid based reverse genetics. The efficacy of the novel H3N2 inactivated vaccines with or without M2e-MAP supplementation was evaluated in a mouse model. M2e-MAP conjugated vaccine induced strong antibody responses in mice. Complete protection against the heterologous swine H1N1 virus was observed in mice vaccinated with M2e-MAP combined vaccine. Moreover, this novel peptide confers protection against lethal challenge of A/Puerto Rico/8/34 (H1N1). Taken together, our results suggest the combined immunization of reassortant inactivated H3N2 vaccine and the novel M2e-MAP provided cross-protection against swine and human viruses and may serve as a promising approach for influenza vaccine development.
Animals
;
Antibodies, Viral/blood
;
Antigens, Viral/genetics/*immunology
;
Body Weight
;
Cross Protection/*immunology
;
Disease Models, Animal
;
Epitopes, T-Lymphocyte/genetics/immunology
;
Female
;
Influenza A Virus, H3N2 Subtype/genetics/*immunology
;
Influenza Vaccines/*immunology
;
Mice
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections/*immunology/mortality/pathology/prevention & control
;
Peptides/genetics/*immunology
;
Random Allocation
;
Survival Analysis
;
Vaccines, Synthetic/immunology
;
Virus Replication
5.Bioinformatic analysis of non-VP1 capsid protein of coxsackievirus A6.
Hong-Bo LIU ; Guang-Fei YANG ; Si-Jia LIANG ; Jun LIN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):607-613
This study bioinformatically analyzed the non-VP1 capsid proteins (VP2-VP4) of Coxasckievirus A6 (CVA6), with an attempt to predict their basic physicochemical properties, structural/functional features and linear B cell eiptopes. The online tools SubLoc, TargetP and the others from ExPASy Bioinformatics Resource Portal, and SWISS-MODEL (an online protein structure modeling server), were utilized to analyze the amino acid (AA) sequences of VP2-VP4 proteins of CVA6. Our results showed that the VP proteins of CVA6 were all of hydrophilic nature, contained phosphorylation and glycosylation sites and harbored no signal peptide sequences and acetylation sites. Except VP3, the other proteins did not have transmembrane helix structure and nuclear localization signal sequences. Random coils were the major conformation of the secondary structure of the capsid proteins. Analysis of the linear B cell epitopes by employing Bepipred showed that the average antigenic indices (AI) of individual VP proteins were all greater than 0 and the average AI of VP4 was substantially higher than that of VP2 and VP3. The VP proteins all contained a number of potential B cell epitopes and some eiptopes were located at the internal side of the viral capsid or were buried. We successfully predicted the fundamental physicochemical properties, structural/functional features and the linear B cell eiptopes and found that different VP proteins share some common features and each has its unique attributes. These findings will help us understand the pathogenicity of CVA6 and develop related vaccines and immunodiagnostic reagents.
Amino Acid Sequence
;
Capsid Proteins
;
genetics
;
immunology
;
Computational Biology
;
Enterovirus
;
genetics
;
pathogenicity
;
Epitopes, B-Lymphocyte
;
genetics
;
immunology
;
Humans
6.Immunogenicity and prediction of epitopic region of antigen Ag I/II and glucosyltransferase from Streptococcus mutans.
Xi-Xi CAO ; Jian FAN ; Jiang CHEN ; Yu-Hong LI ; Ming-Wen FAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):416-421
The levels of Streptococcus (S.) mutans infections in saliva were evaluated and a comparison for specific antibody levels among children with different levels of S. mutans infection was made. The promising epitopic regions of antigen AgI/II (PAc) and glucosyltransferase (GTF) for potential vaccine targets related to S. mutans adherence were screened. A total of 94 children aged 3-4 years were randomly selected, including 53 caries-negative and 41 caries-positive children. The values of S. mutans and those of salivary total secretory immunoglobulin A (sIgA), anti-PAc and anti-Glucan binding domain (anti-GLU) were compared to determine the correlation among them. It was found the level of s-IgA against specific antigens did not increase with increasing severity of S. mutans infection, and the complete amino acid sequence of PAc and GTFB was analyzed using the DNAStar Protean system for developing specific anti-caries vaccines related to S. mutans adherence. A significantly positive correlation between the amount of S. mutans and children decayed, missing, and filled teeth index was observed. No significant difference was detected in specific sIgA against PAc or GLU between any two groups. No significant correlation was found between such specific sIgA and caries index. A total of 16 peptides from PAc as well as 13 peptides from GTFB were chosen for further investigation. S. mutans colonization contributed to early children caries as an important etiological factor. The level of sIgA against specific antigens did not increase with increasing severity of S. mutans infection in children. The epitopes of PAc and GTF have been screened to develop the peptide-based or protein-based anti-caries vaccines.
Antibodies, Bacterial
;
biosynthesis
;
Antigens, Bacterial
;
chemistry
;
immunology
;
Bacterial Proteins
;
chemistry
;
immunology
;
Case-Control Studies
;
Child, Preschool
;
Dental Caries
;
immunology
;
pathology
;
prevention & control
;
Epitopes
;
chemistry
;
immunology
;
Female
;
Glucosyltransferases
;
chemistry
;
immunology
;
Humans
;
Immunoglobulin A, Secretory
;
biosynthesis
;
Male
;
Peptides
;
chemistry
;
immunology
;
Saliva
;
chemistry
;
microbiology
;
Severity of Illness Index
;
Streptococcal Vaccines
;
biosynthesis
;
chemistry
;
immunology
;
Streptococcus mutans
;
chemistry
;
immunology
;
pathogenicity
;
Vaccines, Subunit
;
Virulence Factors
;
chemistry
;
immunology
7.Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori.
Kyoung Yong JEONG ; Mina SON ; June Yong LEE ; Kyung Hee PARK ; Jae Hyun LEE ; Jung Won PARK
Journal of Korean Medical Science 2016;31(1):18-24
Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm.
Adolescent
;
Adult
;
Allergens/*chemistry/*immunology
;
Amino Acid Sequence
;
Animals
;
Bombyx/*chemistry/genetics/growth & development/*immunology
;
Epitopes/immunology
;
Female
;
Food Hypersensitivity/etiology
;
Glycoproteins/*chemistry/genetics/*immunology
;
Hot Temperature
;
Humans
;
Immunoglobulin E/immunology
;
Male
;
Molecular Sequence Data
;
Molecular Weight
;
Proteomics
;
Pupa/chemistry/immunology
;
Recombinant Proteins/biosynthesis/chemistry/immunology
;
Sequence Alignment
8.Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6.
Yanhua WANG ; Guangxiang WANG ; Jian Ping CAI
The Korean Journal of Parasitology 2016;54(4):431-437
The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents.
Allergy and Immunology
;
Antibodies
;
Computational Biology
;
Enzyme-Linked Immunosorbent Assay
;
Epitopes
;
Epitopes, B-Lymphocyte*
;
Indicators and Reagents
;
Peptides
;
Toxoplasma*
;
Vaccines
9.Development, identification and application of 33 monoclonal antibodies against cardiac troponin T.
Yuehong HU ; Zimin CHEN ; Yuxiang CHEN ; Yinghui YANG ; Shuying WEI ; Liuwei SONG ; Guoliang ZHOU ; Shengxiang GE
Chinese Journal of Biotechnology 2016;32(12):1694-1703
The aim of this study is to prepare and characterize cardiac troponin T (cTnT) monoclonal antibodies (mAb), and further develop a chemiluminescence quantitative detection assay for cTnT. BALB/c mice were immunized with recombinant cTnT antigen, and specific mAbs were prepared using conventional hybridoma technique and screened by indirect ELISA method. To identify the epitopes, several cTnT peptide fragments were synthesized or expressed by genetic engineering. A double antibody sandwich ELISA method was used to screen the mAb pairs for cTnT detection, and the automatic chemiluminescence detection assay for cTnT was developed. In total 220 clinical specimens were used for system comparison between our assay and Roche cTnT assay; further performance characteristics was evaluated by testing 238 clinical samples and 784 physical examination samples. We successfully screened 33 strains of hybridoms against cTnT, and the mAbs' epitopes were identified. Mab E16H8 and C8G11 with a detection limit of 10 pg/mL cTnT antigen were selected to develop the full automatic chemiluminescence quantitative assay. The correlation coefficient of our reagent with Roche's was 0.959 9, with a coincidence rate of 95%. The assay presented a sensitivity of 97.5%, and a specificity of 99.15% in detection of clinical samples. The cTnT concentration was less than 0.080 6 ng/mL in 99% of general population, which agrees with the definition of WHO on patients with acute myocardial infarction (AMI). In summary, we developed monoclonal antibodies against predominant epitopes for diagnostics of cTnT, and an automatic tubular chemiluminescence quantitative detection assay was further developed, which presents a high coincidence rate with Roche's.
Antibodies, Monoclonal
;
immunology
;
Enzyme-Linked Immunosorbent Assay
;
Epitopes
;
immunology
;
Humans
;
Hybridomas
;
Luminescent Measurements
;
Myocardial Infarction
;
Peptide Fragments
;
Sensitivity and Specificity
;
Troponin T
;
immunology
10.Prediction and Identification of HLA-A*0201 Restricted CTL Epitopes from Eps8.
Jing-Wen DU ; Yu-Xin WANG ; Wei-Jun ZHOU ; Chun-Jun JIANG ; Xiao-Ling XIE ; Hong-Hao ZHANG ; Yan-Jie HE ; Yu-Hua LI
Journal of Experimental Hematology 2016;24(3):865-872
OBJECTIVETo find and identify HLA-A*0201 restricted cytotoxic T lymphocyte (CTL) epitopes from epidermal growth factor pathway substrate number 8 (Eps8) for specific immunotherapy based on Eps8-derived epitopes in clinic.
METHODSOnline biological softwares involved C-proteasomal cleavage, MHC class I binding affinity and TAP transport efficiency were used for prediction of HLA-A*0201 restricted epitopes from Eps8. Then, T2-binding assays and peptide/MHC complex stability tests were used to further verify the predicted epitopes. Specific secretion of IFN-γ from human CTL was assayed using the IFN-γ ELISPOT kit, and cytolytic activity was measured by a 4-h lactate dehydrogenase (LDH) release assay. Finally, the functional effects in vivo were measured in HLA-A*0201/Kb transgenic (Tg) mice.
RESULTSFour natural epitopes were designed through online biological softwares. Of the four epitopes selected, p360-368 was found to have the high binding affinity to HLA-A*0201, while p101-109 and p276-284 showed moderate affinities. DC50 of peptide/MHC complexes of the natural epitopes mentioned were all longer than 8 h. In functional assays with human PBMNC in vitro and in HLA-A*0201/Kb transgenic mice in vivo, CTLs primed by each epitope (p101-109, p276-284 and p360-368) secreted IFN-γ and were toxic to cancer cells from a variety of tissue types in an HLA-A*0201-restricted and Eps8-specific manner.
CONCLUSIONNatural epitopes (p101-109, p276-284 and p360-368) may be the HLA-A*0201 restricted epitope derived from Eps8.
Adaptor Proteins, Signal Transducing ; immunology ; Animals ; Epitopes, T-Lymphocyte ; metabolism ; HLA-A2 Antigen ; metabolism ; Humans ; Mice ; Mice, Transgenic ; T-Lymphocytes, Cytotoxic

Result Analysis
Print
Save
E-mail