1.Comparative transcriptomic analysis reveals adriamycin-induced apoptosis via p53 signaling pathway in retinal pigment epithelial cells.
Yu-Chen LIN ; Ze-Ren SHEN ; Xiao-Hui SONG ; Xin LIU ; Ke YAO
Journal of Zhejiang University. Science. B 2018;19(12):895-909
OBJECTIVE:
This paper applied a transcriptomic approach to investigate the mechanisms of adriamycin (ADR) in treating proliferative vitreoretinopathy (PVR) using ARPE-19 cells.
METHODS:
The growth inhibitory effects of ADR on ARPE-19 cells were assessed by sulforhodamine B (SRB) assay and propidium iodide (PI) staining using flow cytometry. The differentially expressed genes between ADR-treated ARPE-19 cells and normal ARPE-19 cells and the signaling pathways involved were investigated by microarray analysis. Mitochondrial function was detected by JC-1 staining using flow cytometry and the Bcl-2/Bax protein family. The phosphorylated histone H2AX (γ-H2AX), phosphorylated checkpoint kinase 1 (p-CHK1), and phosphorylated checkpoint kinase 2 (p-CHK2) were assessed to detect DNA damage and repair.
RESULTS:
ADR could significantly inhibit ARPE-19 cell proliferation and induce caspase-dependent apoptosis in vitro. In total, 4479 differentially expressed genes were found, and gene ontology items and the p53 signaling pathway were enriched. A protein-protein interaction analysis indicated that the TP53 protein molecules regulated by ADR were related to DNA damage and oxidative stress. ADR reduced mitochondrial membrane potential and the Bcl-2/Bax ratio. p53-knockdown restored the activation of c-caspase-3 activity induced by ADR by regulating Bax expression, and it inhibited ADR-induced ARPE-19 cell apoptosis. Finally, the levels of the γ-H2AX, p-CHK1, and p-CHK2 proteins were up-regulated after ADR exposure.
CONCLUSIONS
The mechanism of ARPE-19 cell death induced by ADR may be caspase-dependent apoptosis, and it may be regulated by the p53-dependent mitochondrial dysfunction, activating the p53 signaling pathway through DNA damage.
Apoptosis
;
Caspases/metabolism*
;
Cell Proliferation
;
Cell Survival/drug effects*
;
Doxorubicin/pharmacology*
;
Flow Cytometry
;
Gene Expression Profiling
;
Gene Expression Regulation
;
Humans
;
Membrane Potential, Mitochondrial
;
Oligonucleotide Array Sequence Analysis
;
Oxidative Stress/drug effects*
;
Phosphorylation
;
Propidium/chemistry*
;
RNA, Small Interfering/metabolism*
;
Retinal Pigment Epithelium/metabolism*
;
Rhodamines/chemistry*
;
Signal Transduction/drug effects*
;
Transcriptome
;
Tumor Suppressor Protein p53/metabolism*
;
Vitreoretinopathy, Proliferative/drug therapy*
2.Effect of ligustrazine nanoparticles nano spray on transforming growth factor-β/Smad signal pathway of rat peritoneal mesothelial cells induced by tumor necrosis factor-α.
Shuai YAN ; Lan YANG ; Yin-Zi YUE ; Wen-Lin LI ; Li ZENG ; Jin YUE ; Chun-Qin MAO
Chinese journal of integrative medicine 2016;22(8):629-634
OBJECTIVETo study the effect of ligustrazine nanoparticles nano spray (LNNS) on transforming growth factor β (TGF-β)/Smad signal protein of rat peritoneal mesothelial cells (RPMC) induced by tumor necrosis factor α (TNF-α), and the anti-adhesion mechanism of LNNS in the abdominal cavity.
METHODSThe primary culture and subculture of rat peritoneal mesothelial cells (RPMC) was processed by trypsin digestion method in vitro. The third generation was identifified for experiment and divided into 5 groups: a blank group: RPMC without treatment; a control group: RPMC stimulated with TNF-α; RPMC treated by a low-dosage LNNS group (2.5 mg/L); RPMC treated by a medium-dosage LNNS group (5 mg/L); and RPMC treated by a high-dosage LNNS group (10 mg/L). Reverse transcription-polymerase chain reaction was applied to test the expression of fifibronectin, collagen I (COL-I), TGF-β mRNA, and Western blot method to test the Smad protein 7 expression of RPMC.
RESULTSCompared with the blank group, a signifificant elevation in fifibronectin (FN), COL-I and TGF-β mRNA expression of RPMC were observed in the control group (P<0.05). Compared with the control group, LNNS suppressed the expressions of FN, COL-I and TGF-β mRNA in a concentrationdependent manner (P<0.05). The expression of Smad7 protein of RPMC was down-regulated by TNF-α stimulation, and up-regulated with the increase of LNNS dose (P<0.05).
CONCLUSIONSTNF-α may induce changes in RPMC's viability, leading to peritoneal injury. LNNS could reverse the induction of fifibrosis related cytokine FN, COL-I and TGF-β, up-regulating the expression of Smad7 by TNF-α in RPMC, thus attenuate peritoneal injury by repairing mesothelial cells.
Animals ; Collagen Type I ; genetics ; metabolism ; Epithelium ; drug effects ; metabolism ; Fibronectins ; metabolism ; Male ; Nanoparticles ; chemistry ; ultrastructure ; Particle Size ; Peritoneal Cavity ; cytology ; Pyrazines ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Signal Transduction ; drug effects ; Smad Proteins ; metabolism ; Transforming Growth Factor beta ; genetics ; metabolism ; Tumor Necrosis Factor-alpha ; pharmacology
3.Hypoxia Increases Epithelial Permeability in Human Nasal Epithelia.
Hyun Jin MIN ; Tae Hoon KIM ; Joo Heon YOON ; Chang Hoon KIM
Yonsei Medical Journal 2015;56(3):825-831
PURPOSE: The nasal mucosa is the first site to encounter pathogens, and it forms continuous barriers to various stimuli. This barrier function is very important in the innate defense mechanism. Additionally, inflammation of the nasal sinus is known to be a hypoxic condition. Here, we studied the effect of hypoxia on barrier function in normal human nasal epithelial (NHNE) cells. MATERIALS AND METHODS: The expression levels of various junction complex proteins were assessed in hypoxia-stimulated NHNE cells and human nasal mucosal tissues. We performed real-time polymerase chain reaction analysis, western blotting, and immunofluorescence assays to examine differences in the mRNA and protein expression of ZO-1, a tight junction protein, and E-cadherin in NHNE cells. Moreover, we evaluated the trans-epithelial resistance (TER) of NHNE cells under hypoxic conditions to check for changes in permeability. The expression of ZO-1 and E-cadherin was measured in human nasal mucosa samples by western blotting. RESULTS: Hypoxia time-dependently decreased the expression of ZO-1 and E-cadherin at the gene and protein levels. In addition, hypoxia decreased the TER of NHNE cells, which indicates increased permeability. Human nasal mucosa samples, which are supposed to be hypoxic, showed significantly decreased levels of ZO-1 and E-cadherin expression compared with control. CONCLUSION: Our results demonstrate that hypoxia altered the expression of junction complex molecules and increased epithelial permeability in human nasal epithelia. This suggests that hypoxia causes barrier dysfunction. Furthermore, it may be associated with innate immune dysfunction after encountering pathogens.
Anoxia/etiology/*metabolism
;
Blotting, Western
;
Cadherins/*analysis/genetics
;
Epithelium/chemistry/pathology
;
Humans
;
Membrane Proteins/*analysis
;
Nasal Mucosa/*chemistry/pathology/*secretion
;
Permeability/*radiation effects
;
RNA, Messenger/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Tight Junctions/*metabolism
;
Zonula Occludens-1 Protein
5.Vitro study on gene transfection efficiency of hyaluronic acid modified core-shell liponanoparticles in human retinal pigment epithelium cells.
Ya-Nan ZHAO ; Li GAN ; Jing WANG ; Xi CHEN ; Zheng JIA ; Yong GAN ; Jian-Ping LIU
Acta Pharmaceutica Sinica 2014;49(5):711-717
The aim of this study is to prepare hyaluronic acid (HA) modified core-shell liponanoparticles (pHA-LCS-NPs) as gene delivery system and investigate its gene transfection efficiency in human retinal pigment epithelium (ARPE-19) cells in vitro. The pHA-LCS-NPs was prepared by firstly hydrating dry lipid film with CS-NPs suspension to get LCS-NPs, then modifying the lipid bilayer with HA by amidation reaction between HA and dioleoyl phosphatidylethanolamine (DOPE). Its morphology, particle size and zeta potential were investigated. XTT assay was used to evaluate the cell safety of different vectors in vitro. The gene transfection efficiency of pHA-LCS-NPs modified with different contents of HA was investigated in ARPE-19 cells with green fluorescent protein (pEGFP) as the reporter gene. The results showed that the obtained pHA-LCS-NPs exhibited a clear core-shell structure with the average particles size of (214.9 +/- 7.2) nm and zeta potential of (-35 +/- 3.7) mV. The 24 h cumulative release of gene from pHA-LCS-NPs was less than 30%. After 48 h incubation, gene transfection efficiency of pHA-LCS-NPs/pEGFP was 1.81 times and 3.75 times higher than that of CS-NPs/pEGFP and naked pEGFP, respectively. Also no obvious cytotoxicity was observed on pHA-LCS-NPs. It suggested that the pHA-LCS-NPs might be promising non-viral gene delivery systems with high efficiency and low cytotoxicity.
Cell Survival
;
Gene Transfer Techniques
;
Genes, Reporter
;
Genetic Vectors
;
Green Fluorescent Proteins
;
metabolism
;
Humans
;
Hyaluronic Acid
;
chemistry
;
pharmacology
;
Lipids
;
Nanoparticles
;
Particle Size
;
Phosphatidylethanolamines
;
chemistry
;
pharmacology
;
Retinal Pigment Epithelium
;
drug effects
;
Transfection
6.Evaluation of biocompatibility of modified gelatin composite membranes for corneal regeneration.
Yuyu LONG ; Li REN ; Jiaming WANG ; Min CHEN ; Yang LIU ; Binqian LIU ; Yingjun WANG ; Jian GE
Journal of Biomedical Engineering 2013;30(1):170-175
In order to investigate the feasibility of the modified chitosan-gelatin crosslinked membrane (MC-Gel) and chitosan-gelatin crosslinked membrane (CS-Gel) to be a potential biomaterial for corneal regeneration, we evaluated their physicochemical properties and intraocular biocompatibility in this study. White light transmission and permeability of these membranes were detected. Results showed that white light transmission of both membranes was above 90% at 500 nm, which was similar to that of human cornea. The glucose, tryptophan and NaCl permeability of MC-Gel membrane and CS-Gel membrane was better than or similar to those of human cornea. The methylthiazol tetrazolium (MTT) assay was used to assess cell viability and proliferation. Also, interlamellar corneal transplantation was carried out to evaluate ophthalmic biocompatibility of MC-Gel membrane and CS-Gel membrane. Results indicated that MC-Gel membranes could support the proliferation of HCEC and displayed good intraocular biocompatibility when implanted into rabbits. No severe inflammatory reaction occurred after transplantation and the implanted MC-Gel membrane degraded completely 16 weeks post-operation. Due to its good physicochemical properties and biocompatibility, MC-Gel membrane could be a promising candidate material for corneal regeneration.
Animals
;
Biocompatible Materials
;
chemistry
;
Cells, Cultured
;
Chitosan
;
chemistry
;
Cornea
;
cytology
;
Corneal Injuries
;
Cross-Linking Reagents
;
Epithelium, Corneal
;
cytology
;
physiology
;
surgery
;
Gelatin
;
chemistry
;
Guided Tissue Regeneration
;
methods
;
Humans
;
Membranes, Artificial
;
Rabbits
;
Regeneration
;
Tissue Engineering
;
methods
;
Tissue Scaffolds
7.Epithelium constitution for esophageal tissue engineering using electrospinning technology.
Ling CHEN ; Jingjing LV ; Xuechan YU ; Cheng KANG ; Yabin ZHU
Chinese Journal of Biotechnology 2013;29(12):1796-1807
The basement membrane (BM) is crucial in regulating the physical and biological activities of esophageal epithelial cells which attach to the underlying BM. In order to simulate the natural construction of BM, we prepared the fibrous scaffolds using biodegradable polylactide (PLA) and silk fibroin (SF) as the materials via electrospinning technology. BM's proteins containing collagen (IV), laminin, entactin and proteoglycan were extracted from porcine esophagus and coated on the eletrospun fibers. Morphology, mechanical strength, biodegradability and cytocompatibility of the coated and uncoated scaffolds were tested and evaluated using scanning electron micrography, mechanical test system, immunofluorescence assay and western blotting with CK14 as the primary antibody. The fibrous scaffold PLA or PLA/SF, generated from the present protocol had good formation and mechanical and biodegradable properties. After coating with BM's proteins, the scaffold could enhance the growth and differentiation of esophageal epithelial cells, which would contribute to remodel and regenerate the tissue engineered epithelium and further contribute to engineer the whole esophagus in future.
Absorbable Implants
;
Basement Membrane
;
Biocompatible Materials
;
chemistry
;
Epithelium
;
Esophagus
;
physiology
;
Fibroins
;
chemistry
;
Humans
;
Nanostructures
;
chemistry
;
Polyesters
;
chemistry
;
Regeneration
;
physiology
;
Tissue Engineering
;
methods
;
Tissue Scaffolds
;
chemistry
8.Comparison of growth of human fetal RPE cells on electrospun nanofibers and etched pore polyester membranes.
Journal of Central South University(Medical Sciences) 2012;37(5):433-440
OBJECTIVE:
To investigate and compare the growth of human fetal retinal pigment epithelial (RPE) cells seeded onto electrospun polyamide nanofibers (EPN) or etched pore polyester (EPP), and, further, to explore their possible use as prosthetic Bruch's membrane.
METHODS:
Human fetal RPE cells were planted onto the EPN, EPP and plastic (control) substrates in Transwells. The cultures were assessed with respect to cell attachment at 2, 4, 8 hours and proliferation at 1, 4, 8 days after seeding. Growth and morphology of the cells were monitored under the phase contrast microscope, and the phenotype was identified by immunofluorescence staining with antibodies against tight junction protein ZO-1. Strips of single EPP coated with nothing or EPP coated with EPN was differently implanted into the subretinal space of two P21 RCS rats for two weeks and the histologic slides of the retina were assessed.
RESULTS:
Cultured human fetal RPE cells were attached to either EPN or EPP substrates (with seeding on plastic substrate as control). After 8 h, the numbers of adherent cells in the EPN, EPP and control groups were 1.23*10(5)/cm(2), 1.70*10(5)/cm(2), and 1.64*10(5)/cm(2), respectively. The number of RPE cells attached to EPN was obviously less than that to both EPP and control (P<0.05). On the first day, the proliferation of cells on EPN was less than that of EPP and control (P<0.05); but by the 8th day in culture, the proliferation of cells on EPN had increased and was higher than proliferation on both EPP and control (P<0.05). All of the RPE cells cultured on EPN and EPP substrates were in monolayer, and the EPN-attached cells resembled the inner collagenous layer of Bruch's membrane. Immunofluorescence staining showed that the RPE cells cultured on EPN and EPP substrates adopted a higher expression of ZO-1 than that on the plastic control substrate. Subretinal implantation of either EPP alone or EPP as a carrier for free EPN for 2 weeks in P21RCS rats resulted in an expected encapsulation and loss of photoreceptor layer. No toxicity or other adverse reaction was observed in the vicinity of the transplant.
CONCLUSION
EPN and EPP could maintain human fetal RPE cell attachment and proliferation. Both EPN and EPP appeared to be grossly tolerance and biocompatible with subretinal implantation. EPN represents an intriguing prospect for prosthetic Bruch's membrane replacement because of its similarity in structure to native Bruch's membrane.
Animals
;
Biocompatible Materials
;
chemistry
;
Bruch Membrane
;
Cell Proliferation
;
Cells, Cultured
;
Fetus
;
Humans
;
Membranes, Artificial
;
Nanofibers
;
chemistry
;
Polyesters
;
chemistry
;
Porosity
;
Rats
;
Retinal Pigment Epithelium
;
cytology
;
growth & development
;
Tissue Engineering
9.Preparation and cytocompatibility of chitosan-based carriers of corneal cells.
Xingshuang GAO ; Wanshun LIU ; Baoqin HAN ; Xiaojuan WEI
Chinese Journal of Biotechnology 2008;24(8):1381-1386
To study the possibility of using hydroxypropyl chitosan-based blend membranes as carriers of corneal cells in tissue engineering, we prepared three kinds of blend membranes labeled hydroxypropyl chitosan/chondroitin sulfate, hydroxypropyl chitosan/gelatin/chondroitin sulfate and hydroxypropyl chitosan/oxidized hyaluronic acid/chondroitin sulfate. The transparency, water content and ability of protein adsorption of the blend membranes were measured. To evaluate the cytocompatibility of the blend membranes with corneal epithelial cells, rabbit corneal epithelial cells were cultured on the surface of the carrier membranes. The morphological characteristics, cell adhesion, cell proliferation and the activity of lactate dehydrogenase (LDH) in the media were investigated. Three kinds of blend membranes had good optical transmittance, suitable water content and ability of protein adsorption. The results showed that the less injury was made to corneal epithelial cells by the hydroxypropyl chitosan/gelatin/chondroitin sulfate blend membrane than the others. This kind of membrane was favor of the growth and adhesion of corneal epithelial cells. The hydroxypropyl chitosan/gelatin/chondroitin sulfate blend membrane is a promising carrier of corneal cells and can be used in reconstruction of tissue engineered cornea.
Animals
;
Biocompatible Materials
;
chemistry
;
pharmacology
;
Cell Culture Techniques
;
methods
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Chitosan
;
chemistry
;
Chondroitin Sulfates
;
chemistry
;
Epithelium, Corneal
;
cytology
;
Gelatin
;
chemistry
;
Membranes, Artificial
;
Rabbits
;
Tissue Engineering
;
methods
10.Experimental varicocele affects the ipsilateral testis in rats.
Yi-Qun ZHENG ; Xiao-Bin ZHANG ; Fan CHENG ; Ben-Zheng ZHOU ; Ting RAO ; An-Hua FEI
National Journal of Andrology 2008;14(9):805-809
OBJECTIVETo investigate the impact of experimental varicocele (EV) on the ipsilateral testis in rats.
METHODSEV was induced by partial ligation of the left renal vein in male SD rats, the control rats subjected to sham operation, and the testes of the EV models and controls were extirpated 6, 12, and 18 weeks later. Johnson's score, ultrastructure of seminiferous tubules, intratesticular testosterone concentration (ITC) and germ cell apoptotic index (AI) of each left testis were evaluated.
RESULTSJohnson's scores were (6.92 +/- 0.52), (4.83 +/- 0.41) and (2.95 +/- 0.26), ITCswere (6.32 +/- 0.85), (5.17 +/- 0.76) and (4.11 +/- 0.69) and AIs were (5.32 +/- 1.23), (15.21 +/- 0.97) and (21.13 +/- 1.12) respectively in the 6 w , 12 w and 18 w EV groups, significantly lower than in the corresponding control groups, (9.56 +/- 0.35, 9.63 +/- 0.31, 9.39 +/- 0.46), (9.64 +/- 1.23, 9.38 +/- 0.69, 9.73 +/- 0.49) and (3.21 +/- 1.15, 3.43 +/- 1.21, 3.61 +/- 1. 15) (P < 0.05), the former two showing a gradual decline while the latter a significant elevation with the increasing duration of varicocele. The damage to the ultrastructure of seminiferous tubules was aggravated with the prolonging of varicocele.
CONCLUSIONEV can cause a progressive decline of ITC, dyszoospermia and increased AI of germ cells.
Animals ; Apoptosis ; Disease Models, Animal ; Infertility, Male ; Male ; Rats ; Rats, Sprague-Dawley ; Seminiferous Epithelium ; cytology ; ultrastructure ; Testis ; chemistry ; metabolism ; Testosterone ; metabolism ; Varicocele ; metabolism ; physiopathology

Result Analysis
Print
Save
E-mail