1.Shen Qi Wan attenuates renal interstitial fibrosis through upregulating AQP1.
Yiyou LIN ; Jiale WEI ; Yehui ZHANG ; Junhao HUANG ; Sichen WANG ; Qihan LUO ; Hongxia YU ; Liting JI ; Xiaojie ZHOU ; Changyu LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(5):359-370
		                        		
		                        			
		                        			Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-β1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-β1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.
		                        		
		                        		
		                        		
		                        			Drugs, Chinese Herbal/pharmacology*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Kidney/physiology*
		                        			;
		                        		
		                        			Fibrosis/drug therapy*
		                        			;
		                        		
		                        			Renal Insufficiency, Chronic/drug therapy*
		                        			;
		                        		
		                        			Adenine
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			Aquaporin 1/metabolism*
		                        			
		                        		
		                        	
2.Role of LINC00152 in non-small cell lung cancer.
Journal of Zhejiang University. Science. B 2020;21(3):179-191
		                        		
		                        			
		                        			Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer cases. The pathogenesis of NSCLC involves complex gene networks that include different types of non-coding RNAs, such as long non-coding RNAs (lncRNAs). The role of lncRNAs in NSCLC is gaining an increasing interest as their function is being explored in various human cancers. Recently, a new oncogenic lncRNA, LINC00152 (cytoskeleton regulator RNA (CYTOR)), has been identified in different tumor types. In NSCLC, the high expression of LINC00152 in tumor tissue and peripheral blood samples has been shown to be associated with worse prognoses of NSCLC patients. Overexpression of LINC00152 has been confirmed to promote the proliferation, invasion, and migration of NSCLC cells in vitro, as well as increase tumor growth in vivo. This review discusses the role of LINC00152 in NSCLC.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Biomarkers, Tumor/blood*
		                        			;
		                        		
		                        			Carcinoma, Non-Small-Cell Lung/radiotherapy*
		                        			;
		                        		
		                        			Cell Cycle Checkpoints
		                        			;
		                        		
		                        			Computational Biology
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms/radiotherapy*
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			RNA, Long Noncoding/physiology*
		                        			;
		                        		
		                        			Radiation Tolerance
		                        			
		                        		
		                        	
3.Inhibition of chemotherapy-related breast tumor EMT by application of redox-sensitive siRNA delivery system CSO-ss-SA/siRNA along with doxorubicin treatment.
Xuan LIU ; Xue-Qing ZHOU ; Xu-Wei SHANG ; Li WANG ; Yi LI ; Hong YUAN ; Fu-Qiang HU
Journal of Zhejiang University. Science. B 2020;21(3):218-233
		                        		
		                        			
		                        			Metastasis is one of the main reasons causing death in cancer patients. It was reported that chemotherapy might induce metastasis. In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis, the relationship between epithelial-mesenchymal transition (EMT) and doxorubicin (DOX) treatment was investigated and a redox-sensitive small interfering RNA (siRNA) delivery system was designed. DOX-related reactive oxygen species (ROS) were found to be responsible for the invasiveness of tumor cells in vitro, causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1 (RAC1). In order to decrease RAC1, a redox-sensitive glycolipid drug delivery system (chitosan-ss-stearylamine conjugate (CSO-ss-SA)) was designed to carry siRNA, forming a gene delivery system (CSO-ss-SA/siRNA) downregulating RAC1. CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione (GSH) and showed a significant safety. CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells, reducing the expression of RAC1 protein by 38.2% and decreasing the number of tumor-induced invasion cells by 42.5%. When combined with DOX, CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency. The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.
		                        		
		                        		
		                        		
		                        			Amines/chemistry*
		                        			;
		                        		
		                        			Antineoplastic Agents/adverse effects*
		                        			;
		                        		
		                        			Breast Neoplasms/pathology*
		                        			;
		                        		
		                        			Chitosan/chemistry*
		                        			;
		                        		
		                        			Doxorubicin/adverse effects*
		                        			;
		                        		
		                        			Drug Delivery Systems
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition/drug effects*
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MCF-7 Cells
		                        			;
		                        		
		                        			Neoplasm Metastasis/prevention & control*
		                        			;
		                        		
		                        			Oxidation-Reduction
		                        			;
		                        		
		                        			RNA, Small Interfering/administration & dosage*
		                        			;
		                        		
		                        			Reactive Oxygen Species/metabolism*
		                        			;
		                        		
		                        			rac1 GTP-Binding Protein/physiology*
		                        			
		                        		
		                        	
4.Cyclooxygenase-2 promotes ovarian cancer cell migration and cisplatin resistance via regulating epithelial mesenchymal transition.
Lin DENG ; Ding-Qing FENG ; Bin LING
Journal of Zhejiang University. Science. B 2020;21(4):315-326
		                        		
		                        			OBJECTIVE:
		                        			Drug-resistance and metastasis are major reasons for the high mortality of ovarian cancer (OC) patients. Cyclooxygenase-2 (COX-2) plays a critical role in OC development. This study was designed to evaluate the effects of COX-2 on migration and cisplatin (cis-dichloro diammine platinum, CDDP) resistance of OC cells and explore its related mechanisms.
		                        		
		                        			METHODS:
		                        			Cell counting kit-8 (CCK-8) assay was used to detect the cytotoxicity effects of celecoxib (CXB) and CDDP on SKOV3 and ES2 cells. The effect of COX-2 on migration was evaluated via the healing test. Western blot and real-time quantitative polymerase chain reaction (qPCR) were used to analyze E-cadherin, vimentin, Snail, and Slug levels.
		                        		
		                        			RESULTS:
		                        			COX-2 promoted drug-resistance and cell migration. CXB inhibited these effects. The combination of CDDP and CXB increased tumor cell sensitivity, reduced the amount of CDDP required, and shortened treatment administration time. COX-2 upregulation increased the expression of Snail and Slug, resulting in E-cadherin expression downregulation and vimentin upregulation.
		                        		
		                        			CONCLUSIONS
		                        			COX-2 promotes cancer cell migration and CDDP resistance and may serve as a potential target for curing OC.
		                        		
		                        		
		                        		
		                        			Celecoxib/pharmacology*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cisplatin/pharmacology*
		                        			;
		                        		
		                        			Cyclooxygenase 2/physiology*
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ovarian Neoplasms/pathology*
		                        			;
		                        		
		                        			Polymerase Chain Reaction
		                        			
		                        		
		                        	
5.Epithelial-to-mesenchymal transition in cancer: complexity and opportunities.
Frontiers of Medicine 2018;12(4):361-373
		                        		
		                        			
		                        			The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an important role in both development and cancer progression. Depending on the contextual signals and intracellular gene circuits of a particular cell, this program can drive fully epithelial cells to enter into a series of phenotypic states arrayed along the epithelial-mesenchymal phenotypic axis. These cell states display distinctive cellular characteristics, including stemness, invasiveness, drug-resistance and the ability to form metastases at distant organs, and thereby contribute to cancer metastasis and relapse. Currently we still lack a coherent overview of the molecular and biochemical mechanisms inducing cells to enter various states along the epithelial-mesenchymal phenotypic spectrum. An improved understanding of the dynamic and plastic nature of the EMT program has the potential to yield novel therapies targeting this cellular program that may aid in the management of high-grade malignancies.
		                        		
		                        		
		                        		
		                        			Carcinogenesis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Disease Progression
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasm Metastasis
		                        			
		                        		
		                        	
6.SIRT1 participates in epithelial-mesenchymal transition of EC-9706 and Eca-109 cells by regulating Snail expression.
Yuxiang WU ; Dao XIN ; Can LIU ; Feng WANG
Journal of Southern Medical University 2018;38(11):1325-1330
		                        		
		                        			OBJECTIVE:
		                        			To explore the role of SIRT1 in the occurrence of epithelial-mesenchymal transition (EMT) in EC-9706 and Eca-109 cells and the possible mechanism.
		                        		
		                        			METHODS:
		                        			Three chemically synthesized siRNA targeting SIRT1 were transfected into EC-9706 and Eca-109 cells with the non-transfected cells and cells transfected with the negative siRNAs as controls. Real-time PCR and Western blotting were used to detect the expressions of SIRT1, E-cadherin, vimentin, Snail, Twist1 and ZEB in the cells. Transwell invasion assay and wounding healing assay were used to examine the changes in the invasion and metastasis abilities of the cells after transfection.
		                        		
		                        			RESULTS:
		                        			EC-9706 and Eca-109 cells transfected with SIRT1 siRNA1 and SIRT1 siRNA3 showed significantly decreased mRNA and protein expressions of SIRT1 ( < 0.05). Transwell invasion assay and wounding healing assay showed that transfection with SIRT1 siRNA1 and SIRT1 siRNA3 caused significantly lowered invasion and metastasis abilities in EC-9706 and Eca-109 cells ( < 0.05). In EC-9706 and Eca-109 cells transfected with SIRT1 siRNA1 and SIRT1 siRNA3, the expression level of E-cadherin was significantly increased while the expressions of vimentin, Snail and Twist were significantly lowered ( < 0.05).
		                        		
		                        			CONCLUSIONS
		                        			SIRT1 participates in the invasion and metastasis of EC-9706 and Eca- 109 cells probably by inducing EMT via regulating the expression of Snail.
		                        		
		                        		
		                        		
		                        			Antigens, CD
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cadherins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasm Invasiveness
		                        			;
		                        		
		                        			Nuclear Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sirtuin 1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Snail Family Transcription Factors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			Twist-Related Protein 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Vimentin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Zinc Finger E-box-Binding Homeobox 1
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
7.MicroRNA-340 Inhibits Epithelial-Mesenchymal Transition by Impairing ROCK-1-Dependent Wnt/β-Catenin Signaling Pathway in Epithelial Cells from Human Benign Prostatic Hyperplasia.
Si-Yang CHEN ; Yuan DU ; Jian SONG
Chinese Medical Journal 2018;131(16):2008-2012
		                        		
		                        		
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			MicroRNAs
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Prostatic Hyperplasia
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Wnt Signaling Pathway
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			beta Catenin
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			rho-Associated Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
8.Effects of microRNA-145 on epithelial-mesenchymal transition of TGF-β1-induced human renal proximal tubular epithelial cells.
Hua LIU ; Xiao-Jie HE ; Guo-Jun LI ; Qing-Xiong DING ; Wan-Xia LIANG ; Juan FAN
Chinese Journal of Contemporary Pediatrics 2017;19(6):712-718
OBJECTIVETo investigate the effects of microRNA-145 (miR-145) on epithelial-mesenchymal transition (EMT) of TGF-β1-induced human renal proximal tubular epithelial (HK-2) cells.
METHODSThe gene sequence of miR-145 was synthesized and cloned into pCMV-myc to construct recombinant plasmid pCMV-miR-145. HK-2 cells were divided into four groups: control (untreated), TGF-β1 (treated with TGF-β1), blank+TGF-β1 (treated with TGF-β1 after HK-2 cells transfected with blank plasmid) and miR-145+TGF-β1 (treated with TGF-β1 after HK-2 cells transfected with pCMV-miR-145 recombinant plasmid). Expression of miR-145 was detected by real-time PCR (RT-PCR). TGF-β1, Smad3, Smad2/3, p-Smad2/3, α-SMA, FN and type I collagen (Col I) protein levels were detected by Western blot. Concentrations of fibronectin (FN) and Col I in cell culture supernatants were measured using ELISA.
RESULTSpCMV-miR-145 recombinant plasmid was successfully transfected into HK-2 cells. Compared with the control group, the miR-145+TGF-β1 group showed a significant up-regulation in the expression level of miR-145 (P<0.01). However, the TGF-β1 and blank+TGF-β1 groups showed a significant down-regulation in the expression level of miR-145 compared with that in the control and miR-145+TGF-β1 groups (P<0.01). Compared with the TGF-β1 and blank+TGF-β1 groups, the miR-145+TGF-β1 group showed significantly reduced levels of the signal proteins TGF-β1, Smad3, Smad2/3 and p-Smad2/3 (P<0.05), as well as significantly reduced levels of the biomarkers α-SMA, FN and Col I (P<0.05). Meanwhile, concentrations of FN and Col I in cell culture supernatants also decreased (P<0.05).
CONCLUSIONSmiR-145 modulates the EMT of HK-2 cells treated with TGF-β1, possibly by inhibition of the activation of TGF-β-dependent Smad signaling pathway.
Cells, Cultured ; Epithelial Cells ; drug effects ; pathology ; Epithelial-Mesenchymal Transition ; Humans ; Kidney Tubules, Proximal ; drug effects ; pathology ; MicroRNAs ; physiology ; Transforming Growth Factor beta1 ; pharmacology
9.Hypaconitine inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses adhesion, migration, and invasion of lung cancer A549 cells.
Hai-Tao FENG ; Wen-Wen ZHAO ; Jin-Jian LU ; Yi-Tao WANG ; Xiu-Ping CHEN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(6):427-435
		                        		
		                        			
		                        			Epithelial-mesenchymal transition (EMT) has been implicated in tumor invasion and metastasis and provides novel strategies for cancer therapy. Hypaconitine (HpA), a diester-diterpenoid alkaloid isolated from the root of the Aconitum species, exhibits anti-inflammatory, analgesic, and especially, cardiotoxic activities. Here, we reported the anti-metastatic potentials of HpA in transforming growth factor-β1 (TGF-β1)-induced EMT in lung cancer A549 cells. The cytotoxic effect of HpA was determined by MTT assay. A549 cells were treated with TGF-β1 with or without HpA co-treatment, and the morphological alterations were observed with a microscopy. The expression of E-cadherin, N-cadherin, and NF-κB was determined by both Western blotting and immunofluorescence analyses. The adhesion, migration, and invasion were detected with Matrigel, wound-healing, and transwell assays, respectively. The expression of Snail was determined by Western blotting. The expression of NF-κB p65, IκBα, and p-IκBα in nuclear and cytosolic extracts was assessed by Western blotting. The results showed that low concentration of HpA (<16 μmol·L) had no obvious cytotoxicity to A549 cells. Morphologically, TGF-β1 treatment induced spindle-shaped alteration in the cells. The upregulation of N-cadherin, NF-κB, and Snail and the downregulation of E-cadherin were detected after TGF-β1 treatment. The adhesion, migration and invasion abilities were also increased by TGF-β1. Besides, TGF-β1 induced expression of Snail in a time-dependent manner. Furthermore, TGF-β1 induced nuclear translocation of NF-κB p65. All these alterations were dramatically inhibited by HpA co-treatment. In addition, the NF-κB inhibitor PDTC showed similar inhibitory effect. In conclusion, these results showed that HpA inhibited TGF-β1-induced EMT in A549 cells, which was possibly mediated by the inactivation of the NF-κB signaling pathway, providing an evidence for anti-cancer effect of HpA.
		                        		
		                        		
		                        		
		                        			A549 Cells
		                        			;
		                        		
		                        			Aconitine
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Active Transport, Cell Nucleus
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Antineoplastic Agents, Phytogenic
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cadherins
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Cell Adhesion
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Neoplasm Invasiveness
		                        			;
		                        		
		                        			Transforming Growth Factor beta1
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
10.Research progress on the role of epithelial-mesenchymal transition in pathogenesis of endometriosis.
Journal of Zhejiang University. Medical sciences 2016;45(4):439-445
		                        		
		                        			
		                        			Epithelial-mesenchymal transition plays an important role in the development and progression of endometriosis. Mesenchymal-epithelial transition is involved in forming localized lesions of endometriosis, while EMT is involved in the injury, repair and fibrosis induced by local inflammation of endometriosis and the process of cell invasion and metastasis. The studies of signal transduction pathway and related proteins of epithelial-mesenchymal transition in the process of endometriosis may provide new targets for diagnosis and treatment of endometriosis.
		                        		
		                        		
		                        		
		                        			Endometriosis
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fibrosis
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail