1.Activation of renal outer medullary potassium channel in the renal distal convoluted tubule by high potassium diet.
Xue LI ; Peng-Hui LI ; Yu XIAO ; Kun ZHAO ; Hong-Ye ZHAO ; Chang-Zhu LU ; Xiao-Juan QI ; Rui-Min GU
Acta Physiologica Sinica 2023;75(2):188-196
Renal outer medullary potassium (ROMK) channel is an important K+ excretion channel in the body, and K+ secreted by the ROMK channels is most or all source of urinary potassium. Previous studies focused on the ROMK channels of thick ascending limb (TAL) and collecting duct (CD), while there were few studies on the involvement of ROMK channels of the late distal convoluted tubule (DCT2) in K+ excretion. The purpose of the present study was mainly to record the ROMK channels current in renal DCT2 and observe the effect of high potassium diet on the ROMK channels by using single channel and whole-cell patch-clamp techniques. The results showed that a small conductance channel current with a conductance of 39 pS could be recorded in the apical membrane of renal DCT2, and it could be blocked by Tertiapin-Q (TPNQ), a ROMK channel inhibitor. The high potassium diet significantly increased the probability of ROMK channel current occurrence in the apical membrane of renal DCT2, and enhanced the activity of ROMK channel, compared to normal potassium diet (P < 0.01). Western blot results also demonstrated that the high potassium diet significantly up-regulated the protein expression levels of ROMK channels and epithelial sodium channel (ENaC), and down-regulated the protein expression level of Na+-Cl- cotransporter (NCC). Moreover, the high potassium diet significantly increased urinary potassium excretion. These results suggest that the high potassium diet may activate the ROMK channels in the apical membrane of renal DCT2 and increase the urinary potassium excretion by up-regulating the expression of renal ROMK channels.
Potassium Channels, Inwardly Rectifying/metabolism*
;
Kidney Tubules, Distal/metabolism*
;
Potassium/metabolism*
;
Epithelial Sodium Channels/metabolism*
;
Diet
2.Regulation of kidney on potassium balance and its clinical significance.
Qiong-Hong XIE ; Chuan-Ming HAO
Acta Physiologica Sinica 2023;75(2):216-230
Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.
Humans
;
Bartter Syndrome/metabolism*
;
Pseudohypoaldosteronism/metabolism*
;
Potassium/metabolism*
;
Aldosterone/metabolism*
;
Hypokalemia/metabolism*
;
Gitelman Syndrome/metabolism*
;
Hyperkalemia/metabolism*
;
Clinical Relevance
;
Epithelial Sodium Channels/metabolism*
;
Kidney Tubules, Distal/metabolism*
;
Sodium/metabolism*
;
Hypertension
;
Alkalosis/metabolism*
;
Water/metabolism*
;
Kidney/metabolism*
3.Cystic fibrosis lung disease: Current perspectives
Allergy, Asthma & Respiratory Disease 2020;8(1):3-8
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction, which causes most CF morbidity and mortality. This article reviews the pathophysiology of CF, recent animal models, and current treatment of CF.
Airway Obstruction
;
Chloride Channels
;
Cystic Fibrosis Transmembrane Conductance Regulator
;
Cystic Fibrosis
;
Epithelial Cells
;
Epithelial Sodium Channels
;
Half-Life
;
Inflammation
;
Intestines
;
Lung Diseases
;
Lung
;
Membranes
;
Models, Animal
;
Mortality
;
Pancreas
4.SCNN1B and CA12 play vital roles in occurrence of congenital bilateral absence of vas deferens (CBAVD).
Ying SHEN ; Huan-Xun YUE ; Fu-Ping LI ; Feng-Yun HU ; Xiao-Liang LI ; Qian WAN ; Wen-Rui ZHAO ; Ji-Gang JING ; Di-Ming CAI ; Xiao-Hui JIANG
Asian Journal of Andrology 2019;21(5):525-527
Adult
;
Azoospermia/pathology*
;
Carbonic Anhydrases/genetics*
;
Congenital Abnormalities/genetics*
;
Epithelial Sodium Channels/genetics*
;
Gene Expression Regulation/genetics*
;
Genome, Human
;
Humans
;
Infertility, Male/genetics*
;
Male
;
Male Urogenital Diseases/genetics*
;
Mutation
;
Vas Deferens/abnormalities*
5.Lipoxin A4 Ameliorates Lipopolysaccharide-Induced A549 Cell Injury through Upregulation of N-myc Downstream-Regulated Gene-1.
Jun-Zhi ZHANG ; Zhan-Li LIU ; Yao-Xian ZHANG ; Hai-Jiu LIN ; Zhong-Jun ZHANG
Chinese Medical Journal 2018;131(11):1342-1348
BackgroundLipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALI) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lung epithelial cells. However, how LXA4 promote ENaC expression is still largely elusive. The present study aimed to explore genes and signaling pathway involved in regulating ENaC expression induced by LXA4.
MethodsA549 cells were incubated with LPS and LXA4, or in combination, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) of ENaC-α/γ. Candidate genes affected by LXA4 were explored by transcriptome sequencing of A549 cells. The critical candidate gene was validated by qRT-PCR and Western blot analysis of A549 cells treated with LPS and LXA4 at different concentrations and time intervals. LXA4 receptor (ALX) inhibitor BOC-2 was used to test induction of candidate gene by LXA4. Candidate gene siRNA was adopted to analyze its influence on A549 viability and ENaC-α expression. Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was utilized to probe whether the PI3K signaling pathway was involved in LXA4 induction of candidate gene expression.
ResultsThe A549 cell models of ALI were constructed and subjected to transcriptome sequencing. Among candidate genes, N-myc downstream-regulated gene-1 (NDRG1) was validated by real-time-PCR and Western blot. NDRG1 mRNA was elevated in a dose-dependent manner of LXA4, whereas BOC-2 antagonized NDRG1 expression induced by LXA4. NDRG1 siRNA suppressed viability of LPS-treated A549 cells (treatment vs. control, 0.605 ± 0.063 vs. 0.878 ± 0.083, P = 0.040) and ENaC-α expression (treatment vs. control, 0.458 ± 0.038 vs. 0.711 ± 0.035, P = 0.008). LY294002 inhibited NDRG1 (treatment vs. control, 0.459 ± 0.023 vs. 0.726 ± 0.020, P = 0.001) and ENaC-α (treatment vs. control, 0.236 ± 0.021 vs. 0.814 ± 0.025, P < 0.001) expressions and serum- and glucocorticoid-inducible kinase 1 phosphorylation (treatment vs. control, 0.442 ± 0.024 vs. 1.046 ± 0.082, P = 0.002), indicating the PI3K signaling pathway was involved in regulating NDRG1 expression induced by LXA4.
ConclusionOur research uncovered a critical role of NDRG1 in LXA4 alleviation of LPS-induced A549 cell injury through mediating PI3K signaling to restore ENaC expression.
A549 Cells ; Acute Lung Injury ; metabolism ; Cell Cycle Proteins ; metabolism ; Cell Line ; Epithelial Sodium Channels ; metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; metabolism ; Lipopolysaccharides ; pharmacology ; Lipoxins ; pharmacology ; Signal Transduction ; drug effects
6.Salt-sensitive genes and their relation to obesity.
Yong Pil CHEON ; Myoungsook LEE
Journal of Nutrition and Health 2017;50(3):217-224
PURPOSE: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. METHODS: This review was written based on the modified 3(rd) step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. RESULTS: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), α-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily β-2 (CYP11β-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), 11β-hydroxysteroid dehydrogenase type-2 (HSD 11β-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L), and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, CYP11β-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. CONCLUSION: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.
Adult
;
Angiotensinogen
;
Blood Pressure
;
Cardiovascular Diseases
;
Child
;
Chronic Disease
;
Cytochrome P-450 Enzyme System
;
Epithelial Sodium Channels
;
Genetics
;
Genome-Wide Association Study
;
GTP-Binding Proteins
;
Humans
;
Hypertension
;
Obesity*
;
Oxidoreductases
;
Peptidyl-Dipeptidase A
;
Phosphotransferases
;
Polymorphism, Single Nucleotide
;
Sodium
;
Sodium, Dietary
7.Renal intercalated cells and blood pressure regulation.
Kidney Research and Clinical Practice 2017;36(4):305-317
Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC)-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.
Absorption
;
Acid-Base Equilibrium
;
Adrenal Medulla
;
Aldosterone
;
Alkalosis
;
Angiotensin II
;
Angiotensins
;
Blood Pressure*
;
Catecholamines
;
Epithelial Sodium Channels
;
Negotiating
;
Nephrons
;
Rodentia
8.Renal intercalated cells and blood pressure regulation.
Kidney Research and Clinical Practice 2017;36(4):305-317
Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC)-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.
Absorption
;
Acid-Base Equilibrium
;
Adrenal Medulla
;
Aldosterone
;
Alkalosis
;
Angiotensin II
;
Angiotensins
;
Blood Pressure*
;
Catecholamines
;
Epithelial Sodium Channels
;
Negotiating
;
Nephrons
;
Rodentia
9.Role of Epithelium Sodium Channel in Bone Formation.
Ruo-Yu WANG ; Shu-Hua YANG ; Wei-Hua XU
Chinese Medical Journal 2016;129(5):594-600
OBJECTIVETo review the recent developments in the mechanisms of epithelium sodium channels (ENaCs) induced bone formation and regulation.
DATA SOURCESStudies written in English or Chinese were searched using Medline, PubMed and the index of Chinese-language literature with time restriction from 2005 to 2014. Keywords included ENaC, bone, bone formation, osteonecrosis, estrogen, and osteoporosis. Data from published articles about the structure of ENaC, mechanism of ENaC in bone formation in recent domestic and foreign literature were selected.
STUDY SELECTIONAbstract and full text of all studies were required to obtain. Studies those were not accessible and those did not focus on the keywords were excluded.
RESULTSENaCs are tripolymer ion channels which are assembled from homologous α, β, and γ subunits. Crystal structure of ENaCs suggests that ENaC has a central ion-channel located in the central symmetry axis of the three subunits. ENaCs are protease sensitive channels whose iron-channel activity is regulated by the proteolytic reaction. Channel opening probability of ENaCs is regulated by proteinases, mechanical force, and shear stress. Several molecules are involved in regulation of ENaCs in bone formation, including nitride oxide synthases, voltage-sensitive calcium channels, and cyclooxygenase-2.
CONCLUSIONThe pathway of ENaC involved in shear stress has an effect on stimulating osteoblasts even bone formation by estrogen interference.
Calcium Channels ; physiology ; Epithelial Sodium Channels ; chemistry ; physiology ; Estrogens ; pharmacology ; Humans ; Osteogenesis ; physiology
10.Role of interleukin-17 in alveolar fluid clearance in mice with acute lung injury.
Yan ZHAO ; Li CHENG ; Zhi-Xin SONG ; Xin-Yu DENG ; Jing HE ; Wang DENG ; Dao-Xin WANG
Journal of Southern Medical University 2016;37(4):494-498
OBJECTIVETo investigate the role of interleukin-17 (IL-17) in alveolar fluid clearance in mice with acute lung injury (ALI) and explore the possible mechanism.
METHODSSixteen IL-17-knockout mice and 16 wild-type mice were both randomized for intratracheal instillation of PBS (control) on lipopolysaccharide (LPS) to induce ALI. Forty-eight hours after the treatments, the wet-dry ratio (W/D) of the lungs, IL-8 in the bronchoalveolar lavage fluid (BALF) and histopathological changes of the lung tissues were examined. The expressions of epithelial sodium channel α subunit (α-ENaC) was detected with Western blotting and liver kinase B1 (LKB1) was detected with immunohistochemistry.
RESULTSCompared with wild-type mice treated with LPS, IL-17 knockout mice showed significantly decreased W/D of the lungs (9.739∓3.3 vs 5.351∓0.56) and IL-8 level in the BALF (67.50∓7.33 vs 41.00∓3.16 pg/mL) following LPS challenge. Pathological examination revealed reduced alveolar edema fluid aggregations and lower lung injury score in IL-17 knockout mice with also higher expression levels of ENaC and LKB1 compared with the wild-type mice.
CONCLUSIONKnocking out IL-17 in mice not only alleviates inflammation of the lung tissue following ALI but also reduces the loss of ENaC protein and promotes alveolar fluid clearance, mechanism of which is probably associated with LKB1.
Acute Lung Injury ; metabolism ; Animals ; Bronchoalveolar Lavage Fluid ; chemistry ; Epithelial Sodium Channels ; metabolism ; Gene Knockout Techniques ; Interleukin-17 ; genetics ; metabolism ; Interleukin-8 ; metabolism ; Lipopolysaccharides ; Lung ; pathology ; Mice ; Protein-Serine-Threonine Kinases ; metabolism

Result Analysis
Print
Save
E-mail