1.Effects of Long Non-coding RNA Plasmacytoma Variant Translocation 1 Gene on Inflammatory Response and Cell Migration in Infected Gastric Epithelial Cell Line.
Xiao-Hui JING ; Ling-Xue LI ; Tao-Tao HAN ; Juan SHI
Acta Academiae Medicinae Sinicae 2020;42(2):228-235
To investigate the mechanism of long non-coding RNA plasmacytoma variant translocation 1 (PVT1) in gastric cancer caused by (HP) infection. The expression of PVT1 was detected by quantitative real-time polymerase chain reaction in HP-infected normal gastric epithelial cells GES-1. Gastric cancer cell line SGC-7901 was transfected with PVT1 small interfering RNA and co-cultured with HP,and then the inflammatory cytokines such as tumor necrosis factor-α (TNF-α),interleukin (IL) -1β,IL-6 and IL-8 were detected. After PVT1 was knocked down,the effects of PVT1 on the proliferation and migration of gastric cancer cells were examined by cell scratch assay. RNA-pulldown combined with mass spectrometry was used to detect the protein binding to PVT1,and the result of mass spectrometry was verified by RNA-pulldown combined with Western blot. In HP-infected normal gastric epithelial cells GES-1,quantitative real-time polymerase chain reaction showed that PVT1 was significantly up-regulated (=7.160,=0.019). PVT1 was knocked down in gastric cancer cells,and then infected with HP. The expressions of inflammatory factors including TNF-α (=3.899,=0.011),IL-1β (=14.610,=0.000),and IL-8 (=6.557,=0.001) were significantly inhibited. Although PVT1 knockdown had no significant effect on the proliferation ability of gastric cancer cells,it inhibited the migration of cells. PVT1 might interact with RPS8 protein. PVT1 may act as a pro-inflammatory factor and regulate gastric cancer caused by HP infection.
Cell Line, Tumor
;
Cell Movement
;
Cytokines
;
metabolism
;
Epithelial Cells
;
cytology
;
microbiology
;
Gene Knockdown Techniques
;
Helicobacter Infections
;
pathology
;
Helicobacter pylori
;
Humans
;
Inflammation
;
RNA, Long Noncoding
;
genetics
2.Effect of annexin A2 on EGFR/NF-κB signal transduction and mucin expression in human airway epithelial cells treated with Mycoplasma pneumoniae.
Dong-Dong SHEN ; Fei YUAN ; Jiang-Hong HOU
Chinese Journal of Contemporary Pediatrics 2017;19(7):820-825
OBJECTIVETo investigate the effect of annexin A2 (AnxA2) on epithelial growth factor receptor (EGFR)/nuclear factor-κB (NF-κB) signal transduction and mucin expression in human airway epithelial H292 cells treated with Mycoplasma pneumoniae (MP).
METHODSH292 cells were divided into control group, MP group, NC-siRNA+MP group, and AnxA2 siRNA+MP group. The cells in the MP group were incubated with 5 μg/mL MP antigen for 2 hours. The cells in the NC-siRNA+MP and AnxA2 siRNA+MP groups were transfected with NC-siRNA and AnxA2 siRNA for 24 hours, followed by MP antigen stimulation for 2 hours. The MTT method was used to measure cell viability; quantitative real-time PCR was used to measure the mRNA expression of AnxA2; Western blot was used to measure the protein expression of AnxA2, phosphorylated EGFR (p-EGFR), and phosphorylated p65 NF-κB (p-p65 NF-κB); ELISA was used to measure the secretion of mucin 5AC (MUC5AC) and mucin 5B (MUC5B).
RESULTSThe MP and NC-siRNA+MP groups had lower cell viability than the control group (P<0.05). The AnxA2 siRNA+MP group had higher cell viability than the MP and NC-siRNA+MP groups and lower cell viability than the control group (P<0.05). The MP and NC-siRNA+MP groups had significantly higher mRNA and protein expression of AnxA2 than the AnxA2 siRNA+MP group (P<0.05). Compared with the control group, the MP and NC-siRNA+MP groups had significant increases in the protein expression of p-EGFR, p-p65 NF-κB, MUC5AC, and MUC5B (P<0.05); the AnxA2 siRNA+MP group had lower protein expression than the MP and NC-siRNA+MP groups, but higher protein expression than the control group (P<0.05).
CONCLUSIONSAnxA2 is involved in the airway lesion induced by MP antigen via mediating EGFR/NF-κB signaling activation and mucin expression in human airway epithelial cells.
Annexin A2 ; physiology ; Bronchi ; physiology ; Cells, Cultured ; Epithelial Cells ; microbiology ; Humans ; Mucins ; analysis ; Mycoplasma pneumoniae ; pathogenicity ; NF-kappa B ; physiology ; Receptor, Epidermal Growth Factor ; physiology ; Signal Transduction ; physiology
3.Expression of interferon-λ1 in respiratory epithelial cells of children with RSV infection and its relationship with RSV load.
Mei-Ting TAO ; Ya-Ping XIE ; Shu-Ping LIU ; Hao-Feng CHEN ; Han HUANG ; Min CHEN ; Li-Li ZHONG
Chinese Journal of Contemporary Pediatrics 2017;19(6):677-681
OBJECTIVETo investigate the expression of IFN-λ1 in respiratory epithelial cells of children with respiratory syncytial virus (RSV) infection and its relationship with RSV load.
METHODSThe nasopharyngeal swabs were collected from the children who were hospitalized with respiratory tract infection from June 2015 to June 2016. A direct immunofluorescence assay was used to detect the antigens of seven common respiratory viruses (including RSV) in the nasopharyngeal swabs. A total of 120 children who were only RSV positive were selected as the RSV infection group. A total of 50 children who had negative results in the detection of all viral antigens were selected as the healthy control group. Fluorescence quantitative real-time PCR was used to determine the RSV load and the expression of IFN-λ1 mRNA in the nasopharyngeal swabs of children in the two groups.
RESULTSThe expression of IFN-λ1 in the RSV infection group was significantly higher than that in the healthy control group (P<0.05). The expression of IFN-λ1 was positively correlated with RSV load (r=0.56, P<0.05).
CONCLUSIONSRSV can induce the expression of IFN-λ1 in respiratory epithelial cells, suggesting that IFN-λ1 may play an important role in anti-RSV infection.
Antigens, Viral ; analysis ; Child, Preschool ; Epithelial Cells ; immunology ; Female ; Humans ; Infant ; Infant, Newborn ; Interleukins ; analysis ; physiology ; Male ; Nasopharynx ; microbiology ; Real-Time Polymerase Chain Reaction ; Respiratory Syncytial Virus Infections ; immunology ; virology ; Viral Load
4. Modulates Vaginal Epithelial Cell Innate Response to.
Xiao-Xi NIU ; Ting LI ; Xu ZHANG ; Su-Xia WANG ; Zhao-Hui LIU
Chinese Medical Journal 2017;130(3):273-279
BACKGROUNDVulvovaginal candidiasis is caused by Candida albicans. The vaginal epithelium, as the first site of the initial stage of infection by pathogens, plays an important role in resisting genital tract infections. Moreover, lactobacilli are predominant members of the vaginal microbiota that help to maintain a normal vaginal microenvironment. Therefore, Lactobacillus crispatus was explored for its capacity to intervene in the immune response of vaginal epithelial cells VK2/E6E7 to C. albicans.
METHODSWe examined the interleukin-2 (IL-2), 4, 6, 8, and 17 produced by VK2/E6E7 cells infected with C. albicans and treated with L. crispatus in vitro. The capacity of L. crispatus to adhere to VK2/E6E7 and inhibit C. albicans growth was also tested by scanning electron microscopy (SEM) and adhesion experiments.
RESULTSCompared with group VK2/E6E7 with C. albicans, when treated with L. crispatus, the adhesion of C. albicans to VK2/E6E7 cells decreased significantly by 52.87 ± 1.22%, 47.03 ± 1.35%, and 42.20 ± 1.55% under competition, exclusion, and displacement conditions, respectively. SEM revealed that the invasion of C. albicans into VK2/E6E7 cells was caused by induced endocytosis and active penetration. L. crispatus could effectively protect the cells from the virulence of hyphae and spores of C. albicans and enhance the local immune function of the VK2/E6E7 cells. The concentrations of IL-2, 6, and 17 were upregulated significantly (P < 0.01) and that of IL-8 were downregulated significantly (P < 0.01) in infected VK2/E6E7 cells treated with L. crispatus. The concentration of IL-4 was similar to that of the group VK2/E6E7 with C. albicans (24.10 ± 0.97 vs. 23.12 ± 0.76 pg/ml, P = 0.221).
CONCLUSIONSL. crispatus can attenuate the virulence of C. albicans, modulate the secretion of cytokines and chemokines, and enhance the immune response of VK2/E6E7 cells in vitro. The vaginal mucosa has a potential function in the local immune responses against pathogens that can be promoted by L. crispatus.
Candida albicans ; pathogenicity ; Cell Line, Tumor ; Epithelial Cells ; immunology ; metabolism ; microbiology ; ultrastructure ; Female ; Humans ; Interleukin-17 ; metabolism ; Interleukin-2 ; metabolism ; Interleukin-4 ; metabolism ; Interleukin-6 ; metabolism ; Interleukin-8 ; metabolism ; Lactobacillus crispatus ; physiology ; Microscopy, Electron, Scanning ; Vagina ; cytology
5.alpha-Lipoic Acid Inhibits Expression of IL-8 by Suppressing Activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-Infected Gastric Epithelial AGS Cells.
Ji Hyun CHOI ; Soon Ok CHO ; Hyeyoung KIM
Yonsei Medical Journal 2016;57(1):260-264
The epithelial cytokine response, associated with reactive oxygen species (ROS), is important in Helicobacter pylori (H. pylori)-induced inflammation. H. pylori induces the production of ROS, which may be involved in the activation of mitogen-activated protein kinases (MAPK), janus kinase/signal transducers and activators of transcription (Jak/Stat), and oxidant-sensitive transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB), and thus, expression of interleukin-8 (IL-8) in gastric epithelial cells. alpha-lipoic acid, a naturally occurring thiol compound, is a potential antioxidant. It shows beneficial effects in treatment of oxidant-associated diseases including diabetes. The present study is purposed to investigate whether alpha-lipoic acid inhibits expression of inflammatory cytokine IL-8 by suppressing activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-infected gastric epithelial cells. Gastric epithelial AGS cells were pretreated with or without alpha-lipoic acid for 2 h and infected with H. pylori in a Korean isolate (HP99) at a ratio of 300:1. IL-8 mRNA expression was analyzed by RT-PCR analysis. IL-8 levels in the medium were determined by enzyme-linked immunosorbent assay. NF-kappaB-DNA binding activity was determined by electrophoretic mobility shift assay. Phospho-specific and total forms of MAPK and Jak/Stat were assessed by Western blot analysis. ROS levels were determined using dichlorofluorescein fluorescence. As a result, H. pylori induced increases in ROS levels, mRNA, and protein levels of IL-8, as well as the activation of MAPK [extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase 1/2 (JNK1/2), p38], Jak/Stat (Jak1/2, Stat3), and NF-kappaB in AGS cells, which was inhibited by alpha-lipoic acid. In conclusion, alpha-lipoic acid may be beneficial for prevention and/or treatment of H. pylori infection-associated gastric inflammation.
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells/metabolism
;
Gastric Mucosa/*drug effects/metabolism/microbiology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/immunology/*metabolism
;
Helicobacter pylori/drug effects/*pathogenicity
;
Humans
;
Interleukin-8/genetics/*metabolism
;
JNK Mitogen-Activated Protein Kinases
;
Janus Kinase 1
;
Mitogen-Activated Protein Kinases/*biosynthesis
;
NF-kappa B/*metabolism
;
RNA, Messenger/isolation & purification/metabolism
;
Reactive Oxygen Species/metabolism
;
STAT3 Transcription Factor
;
Stomach/metabolism/*microbiology
;
Thioctic Acid/*pharmacology
6.Effect on Muc2 gene knockdown in Ht29 cells by CRISPR/Cas9 on probiotics-mediated inhibition of E.coli K1 adhesion and invasion.
Jia-Wen QIU ; Xiao-Long HE ; Bao ZHANG ; Lei DU ; Qing ZENG ; Sen LI ; Huan-Huan XIONG ; Min LONG ; Jun LUO ; Hong CAO
Journal of Southern Medical University 2016;36(6):819-823
OBJECTIVETo investigate the effects of Lactobacillus rhamnosus GG (LGG) for inhibiting E.coli K1 (E44) adhesion and invasion of an intestinal epithelial cell model with Muc2 gene knockdown established using CRISPR-Cas9 system.
METHODSTwo 20-25 bp sgRNAs targeting Muc2 were chemically synthesized to construct CRISPR expression vectors for transfection in wild-type human colonic cancer cell line Ht29. The efficiency of Muc2 knockdown was determined using Western blotting. After assessment of the viability and proliferation of the transfected cells with MTT assay, we evaluated the effects of the probiotics against E44 adhesion and invasion of the cells through a competitive exclusion assay.
RESULTSTransfection of the cells with Lenticrisprv2 plasmid vectors resulted in a cell line with stable Muc2 knockdown by 81%. The inhibitory effects of probiotics against E44 adhesion and invasion of the transfected cells were markedly attenuated, and the relative adhesion and invasion rates of E44 were 72.23% (P<0.05) and 81.49% (P<0.05), respectively.
CONCLUSIONMuc2 knockdown causes attenuation of the inhibitory effects of probiotics against E44 adhesion and invasion of the intestinal epithelial cells, suggesting that up-regulation of Muc2 may serve as an important mechanism for the probiotics to reinforce the intestinal barrier and antagonize the pathogenic bacteria, which sheds light on a new strategy for prevention and treatment of bacterial intestinal infections.
Bacterial Adhesion ; CRISPR-Cas Systems ; Epithelial Cells ; cytology ; microbiology ; Escherichia coli ; pathogenicity ; Gene Knockdown Techniques ; HT29 Cells ; Humans ; Intestines ; cytology ; Lactobacillus rhamnosus ; Mucin-2 ; genetics ; Probiotics ; Transfection ; Up-Regulation
7.Diphenyleneiodonium Inhibits Apoptotic Cell Death of Gastric Epithelial Cells Infected with Helicobacter pylori in a Korean Isolate.
Soon Ok CHO ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(4):1150-1154
NADPH oxidase produces a large amount of reactive oxygen species (ROS) in Helicobacter pylori (H. pylori)-induced gastric epithelial cells. Even though ROS mediate apoptotic cell death, direct involvement of NADPH oxidase on H. pylori-induced apoptosis remains unclear. Besides, H. pylori isolates show a high degree of genetic variability. The predominant genotype of H. pylori in Korea has been reported as cagA+, vacA s1b, m2, iceA genotype. Present study aims to investigate whether NADPH oxidase-generated ROS mediate apoptosis in human gastric epithelial AGS cells infected with H. pylori in a Korean isolate. AGS cells were pretreated with or without an NADPH oxidase inhibitor diphenyleneiodonium (DPI) and cultured in the presence of H. pylori at a bacterium/cell ratio of 300:1. Cell viability, hydrogen peroxide level, DNA fragmentation, and protein levels of p53, Bcl-2, and Bax were determined. Results showed that H. pylori inhibited cell viability with the density of H. pylori added to the cells. Inhibition of NADPH oxidase by DPI suppressed H. pylori-induced cell death, increased hydrogen peroxide, DNA fragmentation, and the ratio of Bax/Bcl-2, and p53 induction in AGS cells dose-dependently. The results suggest that targeting NADPH oxidase may prevent the development of gastric inflammation associated with H. pylori infection by suppressing abnormal apoptotic cell death of gastric epithelial cells.
Apoptosis
;
Apoptosis Regulatory Proteins/metabolism
;
Cell Survival
;
Epithelial Cells/metabolism/microbiology
;
Gastric Mucosa/metabolism
;
Helicobacter Infections/*metabolism/microbiology
;
Helicobacter pylori/drug effects/genetics/*isolation & purification
;
Humans
;
NADPH Oxidase/metabolism
;
Onium Compounds/*antagonists & inhibitors/pharmacology
;
Oxidative Stress/drug effects
;
Reactive Oxygen Species/metabolism
;
Republic of Korea
;
Stomach/cytology/*metabolism/microbiology
8.Jak1/Stat3 Is an Upstream Signaling of NF-kappaB Activation in Helicobacter pylori-Induced IL-8 Production in Gastric Epithelial AGS Cells.
Boram CHA ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(3):862-866
Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-kappaB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-kappaB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IkappaBalpha were assessed by Western blot analysis, and NF-kappaB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-kappaB, determined by phosphorylation of IkappaBalpha and NF-kappaB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-kappaB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-kappaB is inhibited and inflammatory cytokine expression is suppressed.
Blotting, Western
;
DNA, Bacterial/analysis/genetics
;
Epithelial Cells/metabolism
;
Gastric Mucosa/drug effects/*immunology/microbiology
;
Gene Expression Regulation/drug effects/*immunology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/immunology/*metabolism
;
Helicobacter pylori/genetics/pathogenicity/*physiology
;
Humans
;
Interleukin-8/genetics/*metabolism
;
Janus Kinase 1
;
NF-kappa B/biosynthesis/*metabolism
;
Phosphorylation
;
RNA, Messenger/metabolism
;
STAT3 Transcription Factor
;
Signal Transduction/genetics
9.Jak1/Stat3 Is an Upstream Signaling of NF-kappaB Activation in Helicobacter pylori-Induced IL-8 Production in Gastric Epithelial AGS Cells.
Boram CHA ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(3):862-866
Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-kappaB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-kappaB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IkappaBalpha were assessed by Western blot analysis, and NF-kappaB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-kappaB, determined by phosphorylation of IkappaBalpha and NF-kappaB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-kappaB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-kappaB is inhibited and inflammatory cytokine expression is suppressed.
Blotting, Western
;
DNA, Bacterial/analysis/genetics
;
Epithelial Cells/metabolism
;
Gastric Mucosa/drug effects/*immunology/microbiology
;
Gene Expression Regulation/drug effects/*immunology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/immunology/*metabolism
;
Helicobacter pylori/genetics/pathogenicity/*physiology
;
Humans
;
Interleukin-8/genetics/*metabolism
;
Janus Kinase 1
;
NF-kappa B/biosynthesis/*metabolism
;
Phosphorylation
;
RNA, Messenger/metabolism
;
STAT3 Transcription Factor
;
Signal Transduction/genetics
10.Nucleotide Binding Oligomerization Domain 1 Is an Essential Signal Transducer in Human Epithelial Cells Infected with Helicobacter pylori That Induces the Transepithelial Migration of Neutrophils.
Beom Jin KIM ; Jae Yeol KIM ; Eung Soo HWANG ; Jae Gyu KIM
Gut and Liver 2015;9(3):358-369
BACKGROUND/AIMS: The cytosolic host protein nucleotide binding oligomerization domain 1 (Nod1) has emerged as a key pathogen recognition molecule for innate immune responses in epithelial cells. The purpose of the study was to elucidate the mechanism by which Helicobacter pylori infection leads to transepithelial neutrophil migration in a Nod1-mediated manner. METHODS: Human epithelial cell lines AGS and Caco-2 were grown and infected with H. pylori. Interleukin (IL)-8 mRNA expression and IL-8 secretion were assessed, and nuclear factor kappaB (NF-kappaB) activation was determined. Stable transfections of AGS and Caco-2 cells with dominant negative Nod1 were generated. Neutrophil migration across the monolayer was quantified. RESULTS: Cytotoxin-associated gene pathogenicity island (cagPAI)(+) H. pylori infection upregulated IL-8 mRNA expression and IL-8 secretion in AGS and Caco-2 cells compared with controls. NF-kappaB activation, IL-8 mRNA expression and IL-8 secretion by cagPAI knockdown strains were reduced compared with those infected with the wild-type strain. NF-kappaB activation, IL-8 mRNA expression and IL-8 secretion in dominant-negative (DN)-Nod1 stably transfected cells were reduced compared with the controls. The transepithelial migration of neutrophils in DN-Nod1 stably transfected cells was reduced compared with that in controls. CONCLUSIONS: Signaling through Nod1 plays an essential role in neutrophil migration induced by the upregulated NF-kappaB activation and IL-8 expression in H. pylori-infected human epithelial cells.
Adult Stem Cells/physiology
;
Caco-2 Cells
;
Cell Line
;
Epithelial Cells/*metabolism/microbiology
;
Gene Expression
;
Genomic Islands
;
Helicobacter Infections/*genetics
;
*Helicobacter pylori
;
Humans
;
Interleukin-8/genetics/secretion
;
NF-kappa B/metabolism
;
Neutrophils/*physiology
;
Nod1 Signaling Adaptor Protein/*physiology
;
RNA, Messenger/metabolism
;
Signal Transduction
;
Transendothelial and Transepithelial Migration/*physiology
;
Up-Regulation

Result Analysis
Print
Save
E-mail