1.Xuebijing alleviates LPS-induced acute lung injury by downregulating pro-inflammatory cytokine production and inhibiting gasdermin-E-mediated pyroptosis of alveolar epithelial cells.
Cuiping ZHANG ; Xiaoyan CHEN ; Tianchang WEI ; Juan SONG ; Xinjun TANG ; Jing BI ; Cuicui CHEN ; Jian ZHOU ; Xiao SU ; Yuanlin SONG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(8):576-588
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterized by diffuse alveolar injury primarily caused by an excessive inflammatory response. Regrettably, the lack of effective pharmacotherapy currently available contributes to the high mortality rate in patients with this condition. Xuebijing (XBJ), a traditional Chinese medicine recognized for its potent anti-inflammatory properties, exhibits promise as a potential therapeutic agent for ALI/ARDS. This study aimed to explore the preventive effects of XBJ on ALI and its underlying mechanism. To this end, we established an LPS-induced ALI model and treated ALI mice with XBJ. Our results demonstrated that pre-treatment with XBJ significantly alleviated lung inflammation and increased the survival rate of ALI mice by 37.5%. Moreover, XBJ substantially suppressed the production of TNF-α, IL-6, and IL-1β in the lung tissue. Subsequently, we performed a network pharmacology analysis and identified identified 109 potential target genes of XBJ that were mainly involved in multiple signaling pathways related to programmed cell death and anti-inflammatory responses. Furthermore, we found that XBJ exerted its inhibitory effect on gasdermin-E-mediated pyroptosis of lung cells by suppressing TNF-α production. Therefore, this study not only establishes the preventive efficacy of XBJ in ALI but also reveals its role in protecting alveolar epithelial cells against gasdermin-E-mediated pyroptosis by reducing TNF-α release.
Animals
;
Mice
;
Alveolar Epithelial Cells
;
Pyroptosis
;
Gasdermins
;
Lipopolysaccharides/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Acute Lung Injury/drug therapy*
;
Respiratory Distress Syndrome
2.Yifei Jianpi recipe improves cigarette smoke-induced inflammatory injury and mucus hypersecretion in human bronchial epithelial cells by inhibiting the TLR4/NF-κB signaling pathway.
Chen XU ; Chunying LI ; Sheng WANG
Journal of Southern Medical University 2023;43(4):507-515
OBJECTIVE:
To explore the mechanism of Yifei Jianpi recipe for improving cigarette smoke- induced inflammatory injury and mucus hypersecretion in cultured human bronchial epithelial cells.
METHODS:
Serum samples were collected from 40 SD rats treated with Yifei Jianpi recipe (n=20) or normal saline (n=20) by gavage. Cultured human bronchial epithelial 16HBE cells were stimulated with an aqueous cigarette smoke extract (CSE), followed by treatment with the collected serum at different dilutions. The optimal concentration and treatment time of CSE and the medicated serum for cell treatment were determined with CCK-8 assay. The expressions of TLR4, NF-κB, MUC5AC, MUC7, and muc8 at both the mRNA and protein levels in the treated cells were examined with RT- qPCR and Western blotting, and the effects of TLR4 gene silencing and overexpression on their expressions were assessed. The expressions of TNF-α, IL-1 β, IL-6 and IL-8 in the cells were detected using ELISA.
RESULTS:
At the optimal concentration of 20%, treatment with the medicated serum for 24 h significantly lowered the mRNA and protein expressions of TLR4, NF- κB, MUC5AC, MUC7, and MUC8 in CSE- exposed 16HBE cells, and these effects were further enhanced by TLR4 silencing in the cells. In 16HBE cells with TLR4 overexpression, the expressions of TLR4, NF-κB, MUC5AC, MUC7, and MUC8 were significantly increased after CSE exposure and were lowered following treatment with the medicated serum (P < 0.05). The medicated serum also significantly lowered the levels of TNF-α, IL-1β, IL-6 and IL-8 in CSE-exposed 16HBE cells (P < 0.05).
CONCLUSIONS
In the 16HBE cell model of chronic obstructive pulmonary disease (COPD), treatment with Yifei Jianpi recipe-medicated serum improves inflammation and mucus hypersecretion possibly by reducing MUC secretion and inhibiting the TLR4/NF-κB signaling pathway.
Humans
;
Rats
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Interleukin-8/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Cigarette Smoking/adverse effects*
;
Interleukin-6/metabolism*
;
Rats, Sprague-Dawley
;
Pulmonary Disease, Chronic Obstructive/drug therapy*
;
Signal Transduction
;
Epithelial Cells/metabolism*
;
Mucus/metabolism*
;
RNA, Messenger/metabolism*
3.Assessment of Benchmark Dose in BEAS-2B Cells by Evaluating the Cell Relative Viability with Particulates in Motorcycle Exhaust
Tao YU ; Xue Yan ZHANG ; Shu Fei LI ; Yu Mei ZHOU ; Bin LI ; Zhong Xu WANG ; Yu Fei DAI ; Sherleen Xue-Fu ADAMSON ; Yu Xin ZHENG ; Ping BIN
Biomedical and Environmental Sciences 2021;34(4):272-281
Objective:
This study aimed to use an air-liquid interface (ALI) exposure system to simulate the inhalation exposure of motorcycle exhaust particulates (MEPs) and then investigate the benchmark dose (BMD) of MEPs by evaluating cell relative viability (CRV) in lung epithelial BEAS-2B cells.
Methods:
The MEPs dose was characterized by measuring the number concentration (NC), surface area concentration (SAC), and mass concentration (MC). BEAS-2B cells were exposed to MEPs at different concentrations
Results:
Our results reveal that BMD of NC and SAC were estimated by the best-fitting Hill model, while MC was estimated by Polynomial model. The BMDL for CRV following ALI exposure to MEPs were as follows: 364.2#/cm
Conclusion
These results indicate that MEPs exposure
Benchmarking/statistics & numerical data*
;
Bronchi/physiology*
;
Cell Line
;
Cell Survival/drug effects*
;
Epithelial Cells/physiology*
;
Humans
;
Motorcycles
;
Particulate Matter/adverse effects*
;
Vehicle Emissions/analysis*
4.Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.
Rongjuan PEI ; Jianqi FENG ; Yecheng ZHANG ; Hao SUN ; Lian LI ; Xuejie YANG ; Jiangping HE ; Shuqi XIAO ; Jin XIONG ; Ying LIN ; Kun WEN ; Hongwei ZHOU ; Jiekai CHEN ; Zhili RONG ; Xinwen CHEN
Protein & Cell 2021;12(9):717-733
The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Adenosine Monophosphate/therapeutic use*
;
Alanine/therapeutic use*
;
Alveolar Epithelial Cells/virology*
;
Antibodies, Neutralizing/therapeutic use*
;
COVID-19/virology*
;
Down-Regulation
;
Drug Discovery
;
Human Embryonic Stem Cells/metabolism*
;
Humans
;
Immunity
;
Lipid Metabolism
;
Lung/virology*
;
RNA, Viral/metabolism*
;
SARS-CoV-2/physiology*
;
Virus Replication/drug effects*
5.Menthol enhances interleukin-13-induced synthesis and secretion of mucin 5AC in human bronchial epithelial cells.
Mingyang ZHANG ; Jing WANG ; Minchao LI
Journal of Southern Medical University 2020;40(10):1432-1438
OBJECTIVE:
To investigate the effect of interleukin (IL) -13 combined with cold stimulation on synthesis and secretion of mucin (MUC) 5AC in human bronchial epithelial cell line 16HBE and explore the role of transient receptor potential 8 (TRPM8) and anti-apoptotic factor B-cell lymphoblast-2 (Bcl-2) in this process.
METHODS:
16HBE cells were stimulated with 10 ng/mL IL-13, 1 mmol/L menthol, or both (1 mmol/L menthol was added after 6 days of IL-13 stimulation), and the changes in the expression of MUC5AC, intracellular Ca
RESULTS:
The mRNA and protein expressions of MUC5AC increased significantly in 16HBE cells following stimulation with IL-13, menthol, and both (
CONCLUSIONS
Menthol combined with IL-13 produces a synergistic effect to promote the synthesis and secretion of MUC5AC in 16HBE cells possibly by activating TRPM8 receptor to upregulate the expression of Bcl-2.
Bronchi
;
Epithelial Cells/drug effects*
;
Humans
;
Interleukin-13
;
Menthol/pharmacology*
;
Mucin 5AC
6.Lowest observed adverse effect level of pulmonary pathological alterations due to nitrous acid exposure in guinea pigs.
Masayuki OHYAMA ; Hiroshi NISHIMURA ; Kenichi AZUMA ; Chika MINEJIMA ; Norimichi TAKENAKA ; Shuichi ADACHI
Environmental Health and Preventive Medicine 2020;25(1):56-56
BACKGROUND:
We previously demonstrated that continuous exposure to nitrous acid gas (HONO) for 4 weeks, at a concentration of 3.6 parts per million (ppm), induced pulmonary emphysema-like alterations in guinea pigs. In addition, we found that HONO affected asthma symptoms, based on the measurement of respiratory function in rats exposed to 5.8 ppm HONO. This study aimed to investigate the dose-response effects of HONO exposure on the histopathological alterations in the respiratory tract of guinea pigs to determine the lowest observed adverse effect level (LOAEL) of HONO.
METHODS:
We continuously exposed male Hartley guinea pigs (n = 5) to four different concentrations of HONO (0.0, 0.1, 0.4, and 1.7 ppm) for 4 weeks (24 h/day). We performed histopathological analysis by observing lung tissue samples. We examined samples from three guinea pigs in each group under a light microscope and measured the alveolar mean linear intercept (Lm) and the thickness of the bronchial smooth muscle layer. We further examined samples from two guinea pigs in each group under a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
RESULTS:
We observed the following dose-dependent changes: pulmonary emphysema-like alterations in the centriacinar regions of alveolar ducts, significant increase in Lm in the 1.7 ppm HONO-exposure group, tendency for hyperplasia and pseudostratification of bronchial epithelial cells, and extension of the bronchial epithelial cells and smooth muscle cells in the alveolar duct regions.
CONCLUSIONS
These histopathological findings suggest that the LOAEL of HONO is < 0.1 ppm.
Alveolar Epithelial Cells
;
drug effects
;
Animals
;
Bronchi
;
drug effects
;
Dose-Response Relationship, Drug
;
Emphysema
;
chemically induced
;
Epithelial Cells
;
drug effects
;
Guinea Pigs
;
Hyperplasia
;
chemically induced
;
Inhalation Exposure
;
adverse effects
;
Lung
;
drug effects
;
pathology
;
ultrastructure
;
Male
;
Microscopy, Electron, Scanning
;
Microscopy, Electron, Transmission
;
Myocytes, Smooth Muscle
;
drug effects
;
Nitrous Acid
;
toxicity
7.Inhibition of chemotherapy-related breast tumor EMT by application of redox-sensitive siRNA delivery system CSO-ss-SA/siRNA along with doxorubicin treatment.
Xuan LIU ; Xue-Qing ZHOU ; Xu-Wei SHANG ; Li WANG ; Yi LI ; Hong YUAN ; Fu-Qiang HU
Journal of Zhejiang University. Science. B 2020;21(3):218-233
Metastasis is one of the main reasons causing death in cancer patients. It was reported that chemotherapy might induce metastasis. In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis, the relationship between epithelial-mesenchymal transition (EMT) and doxorubicin (DOX) treatment was investigated and a redox-sensitive small interfering RNA (siRNA) delivery system was designed. DOX-related reactive oxygen species (ROS) were found to be responsible for the invasiveness of tumor cells in vitro, causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1 (RAC1). In order to decrease RAC1, a redox-sensitive glycolipid drug delivery system (chitosan-ss-stearylamine conjugate (CSO-ss-SA)) was designed to carry siRNA, forming a gene delivery system (CSO-ss-SA/siRNA) downregulating RAC1. CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione (GSH) and showed a significant safety. CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells, reducing the expression of RAC1 protein by 38.2% and decreasing the number of tumor-induced invasion cells by 42.5%. When combined with DOX, CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency. The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.
Amines/chemistry*
;
Antineoplastic Agents/adverse effects*
;
Breast Neoplasms/pathology*
;
Chitosan/chemistry*
;
Doxorubicin/adverse effects*
;
Drug Delivery Systems
;
Epithelial-Mesenchymal Transition/drug effects*
;
Female
;
Humans
;
MCF-7 Cells
;
Neoplasm Metastasis/prevention & control*
;
Oxidation-Reduction
;
RNA, Small Interfering/administration & dosage*
;
Reactive Oxygen Species/metabolism*
;
rac1 GTP-Binding Protein/physiology*
8.Characteristics of Atmospheric Fine Particulate Matter (PM ) Induced Differentially Expressed Proteins Determined by Proteomics and Bioinformatics Analyses.
Kai ZHENG ; Ying CAI ; Bing Yu WANG ; Shuang Jian QIN ; Bo Ru LI ; Hai Yan HUANG ; Xiao Yun QIN ; Ding Xin LONG ; Zhao Hui ZHANG ; Xin Yun XU
Biomedical and Environmental Sciences 2020;33(8):583-592
Objective:
To screen the differentially expressed proteins (DEPs) in human bronchial epithelial cells (HBE) treated with atmospheric fine particulate matter (PM ).
Methods:
HBE cells were treated with PM samples from Shenzhen and Taiyuan for 24 h. To detect overall protein expression, the Q Exactive mass spectrometer was used. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and Perseus software were used to screen DEPs.
Results:
Overall, 67 DEPs were screened in the Shenzhen sample-treated group, of which 46 were upregulated and 21 were downregulated. In total, 252 DEPs were screened in the Taiyuan sample-treated group, of which 134 were upregulated and 118 were downregulated. KEGG analysis demonstrated that DEPs were mainly enriched in ubiquitin-mediated proteolysis and HIF-1 signal pathways in Shenzhen PM samples-treated group. The GO analysis demonstrated that Shenzhen sample-induced DEPs were mainly involved in the biological process for absorption of various metal ions and cell components. The Taiyuan PM -induced DEPs were mainly involved in biological processes of protein aggregation regulation and molecular function of oxidase activity. Additionally, three important DEPs, including ANXA2, DIABLO, and AIMP1, were screened.
Conclusion
Our findings provide a valuable basis for further evaluation of PM -associated carcinogenesis.
Air Pollutants
;
analysis
;
Bronchi
;
drug effects
;
metabolism
;
Computational Biology
;
Epithelial Cells
;
drug effects
;
metabolism
;
Gene Expression
;
drug effects
;
Humans
;
Mass Spectrometry
;
Particle Size
;
Particulate Matter
;
analysis
;
Proteomics
9.Effects of Rg_1 on LPS-induced apoptosis and autophagy of lung epithelial cells.
Qi-Jian JI ; Zhao-Rui SUN ; Zhi-Zhou YANG ; Wei ZHANG ; Yi REN ; Li-Ping CAO ; Liang LI ; Shi-Nan NIE
China Journal of Chinese Materia Medica 2019;44(8):1648-1653
This paper aimed to study the protective effect of ginsenoside Rg_1 on endotoxin(LPS)-induced apoptosis of lung epithelial cells and its mechanism of action. Mouse lung epithelial cells(MLE-12) were first treated with LPS. The autophagy changes and apoptosis and the relationship with concentration and time of LPS were observed. Then,the level of autophagy in MLE-12 was regulated at a specific concentration and action time of LPS,and the changes of apoptosis were observed. Secondly,ginsenoside Rg_1 and autophagy inhibitor 3-MA were added respectively at the same concentration and action time of LPS. The lung epithelial cells were grouped to observe the effect of ginsenoside Rg_1 on LPS-induced apoptosis of lung epithelial cells and its mechanism. In the animal experiment,the mice were grouped and tested by apoptosis protein,lung injury score and HE staining section to verify whether ginsenoside Rg_1 has a protective effect on LPS-induced lung injury. The results showed that apoptosis and autophagy increased as the rise of concentration after treatment with LPS for 12 h. The apoptosis increased gradually,and the autophagy increased first and then decreased over time at the LPS concentration of 25 g·L-1. The apoptosis of LPS group was higher than that of control group,and LPS+3-MA group increased further,while apoptosis decreased significantly in LPS+RAM(rapamycin,autophagy promoter) group. The autophagy increased in LPS group,decreased in LPS+3-MA group and increased in LPS+RAM group. The apoptosis of LPS group was higher than that of control group,and the apoptosis of LPS+Rg_1 group decreased. The apoptosis of LPS+Rg_1+3-MA group increased again. The autophagy of LPS group further increased after administration of ginsenoside Rg_1,but decreased after administration of 3-MA. In the in vivo experiments in mice,the apoptosis of LPS group increased significantly compared with the control group,while LPS + ginsenoside Rg_1 group decreased. Lung injury score and HE staining also conformed to the above trend. LPS can induce the apoptosis of lung epithelial cells in a time-dependent and concentration-dependent manner. The autophagy of lung epithelial cells increases with the rise of LPS concentration. At the specific concentration of LPS,autophagy increases first and then decreases after 12-16 hours. Proper increase of autophagy in lung epithelial cells within a certain period of time can reduce the apoptosis induced by LPS,while inhibition of autophagy can increase apoptosis. Ginsenoside Rg_1 has a protective effect on lung cancer epithelial cell apoptosis induced by autophagy.
Animals
;
Apoptosis
;
Autophagy
;
Cells, Cultured
;
Epithelial Cells
;
drug effects
;
Ginsenosides
;
pharmacology
;
Lipopolysaccharides
;
Lung
;
cytology
;
Mice
10.Matrine suppresses lipopolysaccharide-induced fibrosis in human peritoneal mesothelial cells by inhibiting the epithelial-mesenchymal transition.
Yi-Zheng LI ; Xi PENG ; Yun-Hua MA ; Fu-Ji LI ; Yun-Hua LIAO
Chinese Medical Journal 2019;132(6):664-670
BACKGROUND:
Peritoneal fibrosis is the primary reason that patients with end-stage renal disease (ESRD) have to cease peritoneal dialysis. Peritonitis caused by Gram-negative bacteria such as Escherichia coli (E. coli) were on the rise. We had previously shown that matrine inhibited the formation of biofilm by E. coli. However, the role of matrine on the epithelial-mesenchymal transition (EMT) in peritoneal mesothelial cells under chronic inflammatory conditions is still unknown.
METHODS:
We cultured human peritoneal mesothelial cells (HPMCs) with lipopolysaccharide (LPS) to induce an environment that mimicked peritonitis and investigated whether matrine could inhibit LPS-induced EMT in these cells. In addition, we investigated the change in expression levels of the miR-29b and miR-129-5p.
RESULTS:
We found that 10 μg/ml of LPS induced EMT in HPMCs. Matrine inhibited LPS-induced EMT in HPMCs in a dose-dependent manner. We observed that treatment with matrine increased the expression of E-cadherin (F = 50.993, P < 0.01), and decreased the expression of alpha-smooth muscle actin (F = 32.913, P < 0.01). Furthermore, we found that LPS reduced the expression levels of miR-29b and miR-129-5P in HPMCs, while matrine promoted the expression levels of miR-29b and miR-129-5P.
CONCLUSIONS
Matrine could inhibit LPS-induced EMT in HPMCs and reverse LPS inhibited expressions of miR-29 b and miR-129-5P in HPMCs, ultimately reduce peritoneal fibrosis. These findings provide a potential theoretical basis for using matrine in the prevention and treatment of peritoneal fibrosis.
Actins
;
metabolism
;
Alkaloids
;
therapeutic use
;
Cadherins
;
metabolism
;
Cells, Cultured
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Epithelium
;
drug effects
;
Fibrosis
;
chemically induced
;
genetics
;
metabolism
;
Humans
;
Lipopolysaccharides
;
toxicity
;
MicroRNAs
;
metabolism
;
Peritoneal Fibrosis
;
drug therapy
;
Quinolizines
;
therapeutic use

Result Analysis
Print
Save
E-mail