1. Modulates Vaginal Epithelial Cell Innate Response to.
Xiao-Xi NIU ; Ting LI ; Xu ZHANG ; Su-Xia WANG ; Zhao-Hui LIU
Chinese Medical Journal 2017;130(3):273-279
BACKGROUNDVulvovaginal candidiasis is caused by Candida albicans. The vaginal epithelium, as the first site of the initial stage of infection by pathogens, plays an important role in resisting genital tract infections. Moreover, lactobacilli are predominant members of the vaginal microbiota that help to maintain a normal vaginal microenvironment. Therefore, Lactobacillus crispatus was explored for its capacity to intervene in the immune response of vaginal epithelial cells VK2/E6E7 to C. albicans.
METHODSWe examined the interleukin-2 (IL-2), 4, 6, 8, and 17 produced by VK2/E6E7 cells infected with C. albicans and treated with L. crispatus in vitro. The capacity of L. crispatus to adhere to VK2/E6E7 and inhibit C. albicans growth was also tested by scanning electron microscopy (SEM) and adhesion experiments.
RESULTSCompared with group VK2/E6E7 with C. albicans, when treated with L. crispatus, the adhesion of C. albicans to VK2/E6E7 cells decreased significantly by 52.87 ± 1.22%, 47.03 ± 1.35%, and 42.20 ± 1.55% under competition, exclusion, and displacement conditions, respectively. SEM revealed that the invasion of C. albicans into VK2/E6E7 cells was caused by induced endocytosis and active penetration. L. crispatus could effectively protect the cells from the virulence of hyphae and spores of C. albicans and enhance the local immune function of the VK2/E6E7 cells. The concentrations of IL-2, 6, and 17 were upregulated significantly (P < 0.01) and that of IL-8 were downregulated significantly (P < 0.01) in infected VK2/E6E7 cells treated with L. crispatus. The concentration of IL-4 was similar to that of the group VK2/E6E7 with C. albicans (24.10 ± 0.97 vs. 23.12 ± 0.76 pg/ml, P = 0.221).
CONCLUSIONSL. crispatus can attenuate the virulence of C. albicans, modulate the secretion of cytokines and chemokines, and enhance the immune response of VK2/E6E7 cells in vitro. The vaginal mucosa has a potential function in the local immune responses against pathogens that can be promoted by L. crispatus.
Candida albicans ; pathogenicity ; Cell Line, Tumor ; Epithelial Cells ; immunology ; metabolism ; microbiology ; ultrastructure ; Female ; Humans ; Interleukin-17 ; metabolism ; Interleukin-2 ; metabolism ; Interleukin-4 ; metabolism ; Interleukin-6 ; metabolism ; Interleukin-8 ; metabolism ; Lactobacillus crispatus ; physiology ; Microscopy, Electron, Scanning ; Vagina ; cytology
2.Effect of annexin A2 on EGFR/NF-κB signal transduction and mucin expression in human airway epithelial cells treated with Mycoplasma pneumoniae.
Dong-Dong SHEN ; Fei YUAN ; Jiang-Hong HOU
Chinese Journal of Contemporary Pediatrics 2017;19(7):820-825
OBJECTIVETo investigate the effect of annexin A2 (AnxA2) on epithelial growth factor receptor (EGFR)/nuclear factor-κB (NF-κB) signal transduction and mucin expression in human airway epithelial H292 cells treated with Mycoplasma pneumoniae (MP).
METHODSH292 cells were divided into control group, MP group, NC-siRNA+MP group, and AnxA2 siRNA+MP group. The cells in the MP group were incubated with 5 μg/mL MP antigen for 2 hours. The cells in the NC-siRNA+MP and AnxA2 siRNA+MP groups were transfected with NC-siRNA and AnxA2 siRNA for 24 hours, followed by MP antigen stimulation for 2 hours. The MTT method was used to measure cell viability; quantitative real-time PCR was used to measure the mRNA expression of AnxA2; Western blot was used to measure the protein expression of AnxA2, phosphorylated EGFR (p-EGFR), and phosphorylated p65 NF-κB (p-p65 NF-κB); ELISA was used to measure the secretion of mucin 5AC (MUC5AC) and mucin 5B (MUC5B).
RESULTSThe MP and NC-siRNA+MP groups had lower cell viability than the control group (P<0.05). The AnxA2 siRNA+MP group had higher cell viability than the MP and NC-siRNA+MP groups and lower cell viability than the control group (P<0.05). The MP and NC-siRNA+MP groups had significantly higher mRNA and protein expression of AnxA2 than the AnxA2 siRNA+MP group (P<0.05). Compared with the control group, the MP and NC-siRNA+MP groups had significant increases in the protein expression of p-EGFR, p-p65 NF-κB, MUC5AC, and MUC5B (P<0.05); the AnxA2 siRNA+MP group had lower protein expression than the MP and NC-siRNA+MP groups, but higher protein expression than the control group (P<0.05).
CONCLUSIONSAnxA2 is involved in the airway lesion induced by MP antigen via mediating EGFR/NF-κB signaling activation and mucin expression in human airway epithelial cells.
Annexin A2 ; physiology ; Bronchi ; physiology ; Cells, Cultured ; Epithelial Cells ; microbiology ; Humans ; Mucins ; analysis ; Mycoplasma pneumoniae ; pathogenicity ; NF-kappa B ; physiology ; Receptor, Epidermal Growth Factor ; physiology ; Signal Transduction ; physiology
3.Expression of interferon-λ1 in respiratory epithelial cells of children with RSV infection and its relationship with RSV load.
Mei-Ting TAO ; Ya-Ping XIE ; Shu-Ping LIU ; Hao-Feng CHEN ; Han HUANG ; Min CHEN ; Li-Li ZHONG
Chinese Journal of Contemporary Pediatrics 2017;19(6):677-681
OBJECTIVETo investigate the expression of IFN-λ1 in respiratory epithelial cells of children with respiratory syncytial virus (RSV) infection and its relationship with RSV load.
METHODSThe nasopharyngeal swabs were collected from the children who were hospitalized with respiratory tract infection from June 2015 to June 2016. A direct immunofluorescence assay was used to detect the antigens of seven common respiratory viruses (including RSV) in the nasopharyngeal swabs. A total of 120 children who were only RSV positive were selected as the RSV infection group. A total of 50 children who had negative results in the detection of all viral antigens were selected as the healthy control group. Fluorescence quantitative real-time PCR was used to determine the RSV load and the expression of IFN-λ1 mRNA in the nasopharyngeal swabs of children in the two groups.
RESULTSThe expression of IFN-λ1 in the RSV infection group was significantly higher than that in the healthy control group (P<0.05). The expression of IFN-λ1 was positively correlated with RSV load (r=0.56, P<0.05).
CONCLUSIONSRSV can induce the expression of IFN-λ1 in respiratory epithelial cells, suggesting that IFN-λ1 may play an important role in anti-RSV infection.
Antigens, Viral ; analysis ; Child, Preschool ; Epithelial Cells ; immunology ; Female ; Humans ; Infant ; Infant, Newborn ; Interleukins ; analysis ; physiology ; Male ; Nasopharynx ; microbiology ; Real-Time Polymerase Chain Reaction ; Respiratory Syncytial Virus Infections ; immunology ; virology ; Viral Load
4.Jak1/Stat3 Is an Upstream Signaling of NF-kappaB Activation in Helicobacter pylori-Induced IL-8 Production in Gastric Epithelial AGS Cells.
Boram CHA ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(3):862-866
Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-kappaB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-kappaB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IkappaBalpha were assessed by Western blot analysis, and NF-kappaB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-kappaB, determined by phosphorylation of IkappaBalpha and NF-kappaB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-kappaB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-kappaB is inhibited and inflammatory cytokine expression is suppressed.
Blotting, Western
;
DNA, Bacterial/analysis/genetics
;
Epithelial Cells/metabolism
;
Gastric Mucosa/drug effects/*immunology/microbiology
;
Gene Expression Regulation/drug effects/*immunology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/immunology/*metabolism
;
Helicobacter pylori/genetics/pathogenicity/*physiology
;
Humans
;
Interleukin-8/genetics/*metabolism
;
Janus Kinase 1
;
NF-kappa B/biosynthesis/*metabolism
;
Phosphorylation
;
RNA, Messenger/metabolism
;
STAT3 Transcription Factor
;
Signal Transduction/genetics
5.Jak1/Stat3 Is an Upstream Signaling of NF-kappaB Activation in Helicobacter pylori-Induced IL-8 Production in Gastric Epithelial AGS Cells.
Boram CHA ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(3):862-866
Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-kappaB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-kappaB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IkappaBalpha were assessed by Western blot analysis, and NF-kappaB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-kappaB, determined by phosphorylation of IkappaBalpha and NF-kappaB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-kappaB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-kappaB is inhibited and inflammatory cytokine expression is suppressed.
Blotting, Western
;
DNA, Bacterial/analysis/genetics
;
Epithelial Cells/metabolism
;
Gastric Mucosa/drug effects/*immunology/microbiology
;
Gene Expression Regulation/drug effects/*immunology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/immunology/*metabolism
;
Helicobacter pylori/genetics/pathogenicity/*physiology
;
Humans
;
Interleukin-8/genetics/*metabolism
;
Janus Kinase 1
;
NF-kappa B/biosynthesis/*metabolism
;
Phosphorylation
;
RNA, Messenger/metabolism
;
STAT3 Transcription Factor
;
Signal Transduction/genetics
6.Nucleotide Binding Oligomerization Domain 1 Is an Essential Signal Transducer in Human Epithelial Cells Infected with Helicobacter pylori That Induces the Transepithelial Migration of Neutrophils.
Beom Jin KIM ; Jae Yeol KIM ; Eung Soo HWANG ; Jae Gyu KIM
Gut and Liver 2015;9(3):358-369
BACKGROUND/AIMS: The cytosolic host protein nucleotide binding oligomerization domain 1 (Nod1) has emerged as a key pathogen recognition molecule for innate immune responses in epithelial cells. The purpose of the study was to elucidate the mechanism by which Helicobacter pylori infection leads to transepithelial neutrophil migration in a Nod1-mediated manner. METHODS: Human epithelial cell lines AGS and Caco-2 were grown and infected with H. pylori. Interleukin (IL)-8 mRNA expression and IL-8 secretion were assessed, and nuclear factor kappaB (NF-kappaB) activation was determined. Stable transfections of AGS and Caco-2 cells with dominant negative Nod1 were generated. Neutrophil migration across the monolayer was quantified. RESULTS: Cytotoxin-associated gene pathogenicity island (cagPAI)(+) H. pylori infection upregulated IL-8 mRNA expression and IL-8 secretion in AGS and Caco-2 cells compared with controls. NF-kappaB activation, IL-8 mRNA expression and IL-8 secretion by cagPAI knockdown strains were reduced compared with those infected with the wild-type strain. NF-kappaB activation, IL-8 mRNA expression and IL-8 secretion in dominant-negative (DN)-Nod1 stably transfected cells were reduced compared with the controls. The transepithelial migration of neutrophils in DN-Nod1 stably transfected cells was reduced compared with that in controls. CONCLUSIONS: Signaling through Nod1 plays an essential role in neutrophil migration induced by the upregulated NF-kappaB activation and IL-8 expression in H. pylori-infected human epithelial cells.
Adult Stem Cells/physiology
;
Caco-2 Cells
;
Cell Line
;
Epithelial Cells/*metabolism/microbiology
;
Gene Expression
;
Genomic Islands
;
Helicobacter Infections/*genetics
;
*Helicobacter pylori
;
Humans
;
Interleukin-8/genetics/secretion
;
NF-kappa B/metabolism
;
Neutrophils/*physiology
;
Nod1 Signaling Adaptor Protein/*physiology
;
RNA, Messenger/metabolism
;
Signal Transduction
;
Transendothelial and Transepithelial Migration/*physiology
;
Up-Regulation
7.E-cadherin mediates adhesion and endocytosis of Aspergillus fumigatus blastospores in human epithelial cells.
Xiao-yong XU ; Yi SHI ; Peng-peng ZHANG ; Feng ZHANG ; Yu-ying SHEN ; Xin SU ; Bei-lei ZHAO
Chinese Medical Journal 2012;125(4):617-621
BACKGROUNDAspergillus fumigatus (A. fumigatus) is a ubiquitous saprophytic fungus responsible for the majority of invasive mold infections in patients undergoing chemotherapy, organ transplantation or with persistent neutropenia. This study aimed to determine the role of E-cadherin for adhesion and endocytosis of A. fumigatus blastospores in the human epithelial cell line A549.
METHODSA. fumigatus blastospores were incubated with the total protein of A549 to investigate the binding of E-cadherin and blastospores followed by an affinity purification procedure. After establishing the adhesion model, the adhesion and endocytosis of A. fumigatus blastospores by A549 cells were evaluated by down-regulating E-cadherin of A549 cells using blocking antibody or small interfering RNA (siRNA).
RESULTSE-cadherin was adhered to the surface of A. fumigatus blastospore. Adhesion and endocytosis of the blastospores were reduced by blocking or down-regulating E-cadherin in A549 cells.
CONCLUSIONSE-cadherin is a receptor for adhesion and endocytosis of A. fumigatus blastospores in epithelial cells. This may open a new approach to treat this fungal infection.
Aspergillus fumigatus ; cytology ; Cadherins ; genetics ; metabolism ; Cell Line ; Endocytosis ; physiology ; Epithelial Cells ; metabolism ; microbiology ; Fungal Proteins ; chemistry ; metabolism ; Humans ; In Vitro Techniques ; Protein Binding ; physiology ; RNA, Small Interfering ; Spores, Fungal ; cytology
8.Invasive potential of biofilm-forming Staphylococci bovine subclinical mastitis isolates.
Manuela OLIVEIRA ; Ricardo BEXIGA ; Sandro Filipe NUNES ; Cristina Lobo VILELA
Journal of Veterinary Science 2011;12(1):95-97
Staphylococcus (S.) aureus is a common infectious agent of bovine chronic mastitis, a disease that is difficult to eradicate. The abilities of Staphylococci to be internalized and form a biofilm can contribute to host immunological defence evasion that subsequently impairs antimicrobial therapy. The invasive capability of six S. aureus field isolates with different biofilm-forming profiles was compared in vitro using a bovine mammary epithelial cell line. This was further confirmed in primary cell cultures using fluorescent rRNA probes against S. aureus. The results suggest that S. aureus invasion levels are not related to biofilm formation.
Animals
;
*Biofilms
;
Cattle
;
Cell Line
;
Colony Count, Microbial/veterinary
;
Epithelial Cells/microbiology
;
Female
;
In Situ Hybridization, Fluorescence
;
Mastitis, Bovine/*microbiology
;
Portugal
;
Staphylococcal Infections/*veterinary
;
Staphylococcus aureus/classification/genetics/immunology/*physiology
;
Virulence Factors/i
9.Effect of Pertussis Toxin and Herbimycin A on Proteinase-Activated Receptor 2-Mediated Cyclooxygenase 2 Expression in Helicobacter pylori-Infected Gastric Epithelial AGS Cells.
Ji Hye SEO ; Jeong Yeon SEO ; Hae Yun CHUNG ; Hyeyoung KIM
Yonsei Medical Journal 2011;52(3):522-526
Helicobacter pylori (H. pylori) is an important risk factor for chronic gastritis, peptic ulcer, and gastric cancer. Proteinase-activated receptor 2 (PAR2), subgroup of G-protein coupled receptor family, is highly expressed in gastric cancer, and chronic expression of cyclooxygenase-2 (COX-2) plays an important role in H. pylori-associated gastric carcinogenesis and inflammation. We previously demonstrated that H. pylori induced the expression of PAR2 and COX-2 in gastric epithelial cells. Present study aims to investigate whether COX-2 expression induced by H. pylori in Korean isolates is mediated by PAR2 via activation of Gi protein and Src kinase in gastric epithelial AGS cells. Results showed that H. pylori-induced COX-2 expression was inhibited in the cells transfected with antisense oligonucleotide for PAR2 or treated with Gi protein blocker pertussis toxin, Src kinase inhibitor herbimycin A and soybean trypsin inbitor, indicating that COX-2 expression is mediated by PAR2 through activation of Gi protein and Src kinase in gastric epithelial cells infected with H. pylori in Korean isolates. Thus, targeting the activation of PAR2 may be beneficial for prevention or treatment of gastric inflammation and carcinogenesis associated with H. pylori infection.
Benzoquinones/*pharmacology
;
Cell Line, Tumor
;
Cyclooxygenase 2/genetics/*metabolism
;
Epithelial Cells/enzymology/metabolism/microbiology
;
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
;
Gastric Mucosa/enzymology/metabolism/*microbiology
;
*Helicobacter pylori
;
Humans
;
Lactams, Macrocyclic/*pharmacology
;
Oligonucleotides, Antisense
;
Pertussis Toxin/*pharmacology
;
RNA, Messenger/metabolism
;
Receptor, PAR-2/*physiology
;
src-Family Kinases/metabolism
10.Lactobacillus acidophilus Contributes to a Healthy Environment for Vaginal Epithelial Cells.
Woojin PI ; Jae Sook RYU ; Jaesook ROH
The Korean Journal of Parasitology 2011;49(3):295-298
Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.
Cell Adhesion
;
Cell Line
;
Cell Survival
;
Coculture Techniques
;
Culture Media/chemistry
;
Epithelial Cells/*microbiology/*physiology
;
Female
;
Humans
;
Hydrogen-Ion Concentration
;
Lactobacillus acidophilus/growth & development/metabolism/*physiology
;
Time Factors

Result Analysis
Print
Save
E-mail