1.Epithelial cell adhesion efficacy of a novel peptide identified by panning on a smooth titanium surface.
Hidemichi KIHARA ; David M KIM ; Masazumi NAGAI ; Toshiki NOJIRI ; Shigemi NAGAI ; Chia-Yu CHEN ; Cliff LEE ; Wataru HATAKEYAMA ; Hisatomo KONDO ; John DA SILVA
International Journal of Oral Science 2018;10(3):21-21
Epithelial attachment via the basal lamina on the tooth surface provides an important structural defence mechanism against bacterial invasion in combating periodontal disease. However, when considering dental implants, strong epithelial attachment does not exist throughout the titanium-soft tissue interface, making soft tissues more susceptible to peri-implant disease. This study introduced a novel synthetic peptide (A10) to enhance epithelial attachment. A10 was identified from a bacterial peptide display library and synthesized. A10 and protease-activated receptor 4-activating peptide (PAR4-AP, positive control) were immobilized on commercially pure titanium. The peptide-treated titanium showed high epithelial cell migration ability during incubation in platelet-rich plasma. We confirmed the development of dense and expanded BL (stained by Ln5) with pericellular junctions (stained by ZO1) on the peptide-treated titanium surface. In an adhesion assay of epithelial cells on A10-treated titanium, PAR4-AP-treated titanium, bovine root and non-treated titanium, A10-treated titanium and PAR4-AP-treated titanium showed significantly stronger adhesion than non-treated titanium. PAR4-AP-treated titanium showed significantly higher inflammatory cytokine release than non-treated titanium. There was no significant difference in inflammatory cytokine release between A10-treated and non-treated titanium. These results indicated that A10 could induce the adhesion and migration of epithelial cells with low inflammatory cytokine release. This novel peptide has a potentially useful application that could improve clinical outcomes with titanium implants and abutments by reducing or preventing peri-implant disease.
Amino Acid Sequence
;
Animals
;
Benzeneacetamides
;
chemical synthesis
;
pharmacology
;
Cattle
;
Cell Adhesion
;
drug effects
;
Cell Movement
;
drug effects
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Dental Implants
;
Enzyme-Linked Immunosorbent Assay
;
Epithelial Attachment
;
drug effects
;
Epithelial Cells
;
cytology
;
metabolism
;
Microscopy, Confocal
;
Microscopy, Electron, Scanning
;
Piperidones
;
chemical synthesis
;
pharmacology
;
Platelet-Rich Plasma
;
Receptors, Thrombin
;
Surface Properties
;
Titanium
;
chemistry
2.Polysaccharide extracts of Astragalus membranaceus and Atractylodes macrocephala promote intestinal epithelial cell migration by activating the polyamine-mediated K channel.
Dan ZENG ; Can HU ; Ru-Liu LI ; Chuan-Quan LIN ; Jia-Zhong CAI ; Ting-Ting WU ; Jing-Jing SUI ; Wen-Biao LU ; Wei-Wen CHEN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(9):674-682
Astragalus membranaceus (Radix Astragali, RA) and Atractylodes macrocephala (Rhizoma Atractylodis Macrocephalae, RAM) are often used to treat gastrointestinal diseases. In the present study, we determined the effects of polysaccharides extracts from these two herbs on IEC-6 cell migration and explored the potential underlying mechanisms. A migration model with IEC-6 cells was induced using a single-edged razor blade along the diameter of cell layers in six-well polystyrene plates. The cells were grown in control media or media containing spermidine (5 μmol·L, SPD), alpha-difluoromethylornithine (2.5 mmol·L, DFMO), 4-Aminopyridine (40 μmol·L, 4-AP), the polysaccharide extracts of RA or RAM (50, 100, or 200 mg·L), DFMO plus SPD, or DFMO plus polysaccharide extracts of RA or RAM for 12 or 24 h. Next, cytosolic free Ca ([Ca]) was measured using laser confocal microscopy, and cellular polyamine content was quantified with HPLC. Kv1.1 mRNA expression was assessed using RT-qPCR and Kv1.1 and RhoA protein expressions were measured with Western blotting analysis. A cell migration assay was carried out using Image-Pro Plus software. In addition, GC-MS was introduced to analyze the monosaccharide composition of both polysaccharide extracts. The resutls showed that treatment with polysaccharide extracts of RA or RAM significantly increased cellular polyamine content, elevated [Ca] and accelerated migration of IEC-6 cells, compared with the controls (P < 0.01). Polysaccharide extracts not only reversed the inhibitory effects of DFMO on cellular polyamine content and [Ca], but also restored IEC-6 cell migration to control level (P < 0.01 or < 0.05). Kv1.1 mRNA and protein expressions were increased (P < 0.05) after polysaccharide extract treatment in polyamine-deficient IEC-6 cells and RhoA protein expression was increased. Molar ratios of D-ribose, D-arabinose, L-rhamnose, D-mannose, D-glucose, and D-galactose was 1.0 : 14.1 : 0.3 : 19.9 : 181.3 : 6.3 in RA and 1.0 : 4.3 : 0.1 : 5.7 : 2.8 : 2.2 in RAM. In conclusion, treatment with RA and RAM polysaccharide extracts stimulated migration of intestinal epithelial cells via a polyamine-Kv1.1 channel activated signaling pathway, which facilitated intestinal injury healing.
Animals
;
Astragalus propinquus
;
chemistry
;
Atractylodes
;
chemistry
;
Cell Line
;
Cell Movement
;
drug effects
;
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
pharmacology
;
Epithelial Cells
;
cytology
;
drug effects
;
metabolism
;
Intestines
;
cytology
;
drug effects
;
Kv1.1 Potassium Channel
;
genetics
;
metabolism
;
Polyamines
;
metabolism
;
Polysaccharides
;
chemistry
;
isolation & purification
;
pharmacology
;
Rats
;
Rhizome
;
chemistry
;
Signal Transduction
;
drug effects
;
rhoA GTP-Binding Protein
;
metabolism
3.Biliverdin protects against cisplatin-induced apoptosis of renal tubular epithelial cells.
Qian LV ; Ying YAO ; Wei WANG ; Wei XIONG ; Wen-hui LIAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):48-52
Biliverdin (BV) has long been thought to be a cytotoxic metabolic waste product. It has also been demonstrated to have important cytoprotective functions during oxidative stress. The present study aimed to examine the cytoprotective effect of BV on NRK-52E cells, a proximal tubular cell line derived from rat kidney. Cells were treated with 50 µmol/L cisplatin for 24 h (cisplatin group) or pre-treated with BV for 30 min, then with 50 µmol/L cisplatin for 24 h (cisplatin+BV group). Those given no treatment served as a control. Cell apoptosis was evaluated by flow cytometry and cell viability by Cell Counting Kit-8 (CCK-8). The protein expressions of cleaved caspase3, Bax and Bcl-2 were assessed by Western blotting. Reactive oxygen species (ROS) levels were measured using carboxydichlorodihydrofluorescein diacetate (H2DCF). The results showed that cisplatin induced the apoptosis of NRK-52E cells, decreased cell viability, and increased the formation of ROS by upregulating the expression of cleaved caspase3 and Bax and decreasing Bcl-2 protein expression. These effects could be significantly reversed by pretreatment with BV. It was concluded that BV can protect against cisplatin-induced cell apoptosis through the anti-oxidative effects.
Animals
;
Antioxidants
;
pharmacology
;
Apoptosis
;
Biliverdine
;
pharmacology
;
Cell Line
;
Cisplatin
;
toxicity
;
Epithelial Cells
;
drug effects
;
metabolism
;
Kidney Tubules
;
cytology
;
Rats
;
Reactive Oxygen Species
;
metabolism
4.Alterations of Thymic Epithelial Cells in Lipopolysaccharide-induced Neonatal Thymus Involution.
Yong-Jie ZHOU ; Hua PENG ; Yan CHEN ; Ya-Lan LIU
Chinese Medical Journal 2016;129(1):59-65
BACKGROUNDVascular endothelial growth factor (VEGF) in the thymus was mainly produced by the thymic epithelial cells (TECs), the predominant component of the thymic microenvironment. The progression of TECs and the roles of VEGF in the neonatal thymus during sepsis have not been reported. This study aimed to explore the alterations of TECs and VEGF level in the neonatal thymus involution and to explore the possible mechanisms at the cellular level.
METHODSBy establishing a model of clinical sepsis, the changes of TECs were measured by hematoxylin-eosin staining, confocal microscopy, and flow cytometry. Moreover, the levels of VEGF in serum and thymus were assessed based on enzyme-linked immunosorbent assay and Western blotting.
RESULTSThe number of thymocytes and TECs was significantly decreased 24 h after lipopolysaccharide (LPS) challenge, (2.40 ± 0.46)×10 7 vs. (3.93 ± 0.66)×10 7 and (1.16 ± 0.14)×10 5 vs. (2.20 ± 0.19)×10 5 , P < 0.05, respectively. Cortical TECs and medullary TECs in the LPS-treated mice were decreased 1.5-fold and 3.9-fold, P < 0.05, respectively, lower than those in the controls. The number of thymic epithelial progenitors was also decreased. VEGF expression in TECs was down-regulated in a time-dependent manner.
CONCLUSIONVEGF in thymic cells subsets might contribute to the development of TECs in neonatal sepsis.
Animals ; Animals, Newborn ; Cells, Cultured ; Epithelial Cells ; cytology ; drug effects ; metabolism ; Lipopolysaccharides ; toxicity ; Mice ; Thymus Gland ; cytology ; drug effects ; metabolism ; Vascular Endothelial Growth Factor A ; metabolism
5.Arctiin ameliorates advanced oxidation protein product-induced epithelial-to- mesenchymal transition in HK-2 cells by inhibiting endoplasmic reticulum stress.
Jun ZHANG ; Li-Li HUANG ; Xiu-Jie LIANG ; Yue WANG ; Na DUAN ; Xiao-Hong XIANG ; Shuang-Shuang SHU ; Ting-Ting GUO ; Lei YANG ; Xun TANG
Journal of Southern Medical University 2016;36(6):833-837
OBJECTIVETo investigate the effect of arctiin on advanced oxidation protein product (AOPP)-induced epithelial-to-mesenchymal transition (EMT) in tubular cells and explore the mechanisms underlying this effect.
METHODSHuman proximal tubular cells (HK-2 cells) were treated with bovine serum albumin (BSA) or AOPPs in the presence or absence of arctiin. The expressions of E-cadherin, vimentin, and GRP78 at the protein and mRNA levels in the cells were examined using Western blotting and quantitative real-time PCR. The level of reactive oxygen species (ROS) was measured by flow cytometry with DCFH-DA as the fluorescent probe.
RESULTSCompared with BSA-treated cells, the cells treated with AOPPs showed decreased expression of epithelial cell marker E-cadherin and overexpression of mesenchymal marker vimentin and endoplasmic reticulum stress marker GRP78 with an increased ROS level. These changes induced by AOPPs were partly inhibited by arctiin.
CONCLUSIONArctiin can ameliorate AOPP-induced EMT in tubular cells by inhibiting endoplasmic reticulum stress, and oxidative stress response may participate in this process.
Advanced Oxidation Protein Products ; adverse effects ; Cadherins ; metabolism ; Cell Line ; Endoplasmic Reticulum Stress ; Epithelial Cells ; cytology ; drug effects ; Epithelial-Mesenchymal Transition ; Furans ; pharmacology ; Glucosides ; pharmacology ; Heat-Shock Proteins ; metabolism ; Humans ; Kidney Tubules ; cytology ; drug effects ; Oxidative Stress ; Reactive Oxygen Species ; metabolism ; Vimentin ; metabolism
6.Carbon monoxide inhibits the nuclear-cytoplasmic translocation of HMGB1 in an in vitro oxidative stress injury model of mouse renal tubular epithelial cells.
Yu JIA ; Lu WANG ; Guang-Yuan ZHAO ; Zhi-Qiang WANG ; Song CHEN ; Gang CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(6):791-795
Carbon monoxide (CO), as a vital small molecule in signaling pathways, is found to be involved in ischemia-reperfusion injury (IRI) in renal transplantation. CO-releasing molecule-2 (CORM-2), a CO-releasing molecule, is a type of metal carbonyl complexes which can quickly release CO in vivo. In this study, an in vitro oxidative stress injury model was established to examine the effect of CORM-2 pretreatment on the nuclear-cytoplasmic translocation of high mobility group box 1 protein (HMGB1) in mouse primary renal proximal tubular epithelial cells (RPTECs). Immunofluorescence staining showed that HMGB1 in the medium- and CORM-2-treated groups was predominantly localized in the nucleus of the cells, whereas higher amounts of HMGB1 translocated to the cytoplasm in the HO- and inactive CORM-2 (iCORM-2)-treated groups. Western blotting of HMGB1 showed that the total amounts of cytoplasmic HMGB1 in the HO-treated (0.59±0.27) and iCORM-2-treated (0.57±0.22) groups were markedly higher than those in the medium-treated (0.19±0.05) and CORM-2-treated (0.21±0.10) groups (P<0.05). Co-immunoprecipitation showed that the levels of acetylated HMGB1 in the HO-treated (642.98±57.25) and iCORM-2-treated (342.11±131.25) groups were markedly increased as compared with the medium-treated (78.72±74.17) and CORM-2-treated (71.42±53.35) groups (P<0.05), and no significant difference was observed between the medium-treated and CORM-2-treated groups (P>0.05). In conclusion, our study demonstrated that in the in vitro oxidative stress injury model of primary RPTECs, CORM-2 can significantly inhibit the nuclear-cytoplasmic translocation of HMGB1, which is probably associated with the prevention of HMGB1 acetylation.
Active Transport, Cell Nucleus
;
drug effects
;
Animals
;
Carbon Monoxide
;
pharmacology
;
Cell Nucleus
;
metabolism
;
Cells, Cultured
;
Epithelial Cells
;
drug effects
;
metabolism
;
HMGB1 Protein
;
metabolism
;
Kidney Tubules
;
cytology
;
Mice
;
Organometallic Compounds
;
pharmacology
;
Oxidative Stress
7.Oxidative Stress-Activated NHE1 Is Involved in High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells.
Yiqing WU ; Min ZHANG ; Rui LIU ; Chunjie ZHAO
Yonsei Medical Journal 2016;57(5):1252-1259
PURPOSE: Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes mellitus involving disturbances in electrolytes and the acid-base balance caused by a disorder of glucose metabolism. NHE1 is a Na+/H+ exchanger responsible for keeping intracellular pH (pHi) balance and cell growth. Our study aimed to investigate roles of NHE1 in high glucose (HG)-induced apoptosis in renal tubular epithelial cells. MATERIALS AND METHODS: Renal epithelial tubular cell line HK-2 was cultured in medium containing 5 mM or 30 mM glucose. Then, cell apoptosis, oxidative stress, NHE1 expression, and pHi were evaluated. NHE1 siRNA and inhibitor were used to evaluate its role in cell apoptosis. RESULTS: HG significantly increased cell apoptosis and the production of reactive oxygen species (ROS) and 8-OHdG (p<0.05). Meanwhile, we found that HG induced the expression of NHE1 and increased the pHi from 7.0 to 7.6 after 48 h of incubation. However, inhibiting NHE1 using its specific siRNA or antagonist DMA markedly reduced cell apoptosis stimulated by HG. In addition, suppressing cellular oxidative stress using antioxidants, such as glutathione and N-acetyl cysteine, significantly reduced the production of ROS, accompanied by a decrease in NHE1. We also found that activated cyclic GMP-Dependent Protein Kinase Type I (PKG) signaling promoted the production of ROS, which contributed to the regulation of NHE1 functions. CONCLUSION: Our study indicated that HG activates PKG signaling and elevates the production of ROS, which was responsible for the induction of NHE1 expression and dysfunction, as well as subsequent cell apoptosis, in renal tubular epithelial cells.
Antioxidants/metabolism
;
Apoptosis/*drug effects
;
Cation Transport Proteins/*metabolism
;
Cell Cycle/drug effects
;
Cell Line
;
Dose-Response Relationship, Drug
;
Epithelial Cells/*cytology/drug effects/*metabolism
;
Glucose/*pharmacology
;
Glutathione/metabolism
;
Humans
;
Kidney Tubules/*cytology
;
Oxidative Stress/*drug effects
;
Reactive Oxygen Species/metabolism
;
Signal Transduction/drug effects
;
Sodium-Hydrogen Antiporter/*metabolism
8.Effects of the combination of musk and olibanum on the expressions of tight junction proteins in the prostate epithelial cells of rats.
Qun-fang LIN ; Pei HUANG ; Xue-fei TIAN ; Xue-jun SHANG ; Yang-peng WU ; Ping HAN ; Rui-song GAO ; Qing ZHOU
National Journal of Andrology 2015;21(12):1110-1115
OBJECTIVETo investigate the effects of the combination of musk and olibanum on the tight junction protein expressions in prostatic epithelial cells of normal and chronic prostatitis (CP) rats.
METHODSEighty male SD rats were randomly divided into 8 groups of equal number: normal control, normal musk, normal olibanum, normal musk + olibanum, CP model control, CP model musk, CP model olibanum, and CP model musk + olibanum. At 60 days after modeling, the rats in the control, musk, olibanum, and musk + olibanum groups were treated intragastrically with normal saline, musk (0.021 g per kg body weight per day), olibanum (1.05 g per kg body weight per day), or musk + olibanum respectively, all for 3 days. Then, all the rats were sacrificed and their prostate tissues harvested for detection of the expressions of the tight junction proteins Claudin-1, Claudin-3, Occludin, and ZO-1 in the prostatic epithelial cells by immunohistochemical staining.
RESULTSIn the CP models, only the expression of Claudin-1 was significantly increased. In the normal rats, the expression of Claudin-1 was remarkably upregulated after treated with musk (824.6 ± 393.3, P < 0.05), olibanum (982.0 ± 334.0, P < 0.05), and musk + olibanum (1088.1 ± 640.2, P < 0.01); that of Claudin-3 was elevated markedly by olibanum (1 009.5 ± 243.6, P < 0.05) and insignificantly by musk (597.5 ± 80.7), but the increasing effect of olibanum was reduced by musk + olibanum (678.4 ± 255.1). No statistically significant differences were found in the expression of Occludin among the rats treated with musk (693.0 ± 424.8), olibanum (732.1 ± 302.0), and musk + olibanum (560.2 ± 202.3), or in that of ZO-1 in the animals treated with musk (290.0 ± 166.8) and olibanum (419.7 ± 108.1), but the latter was markedly decreased in the musk + olibanum group (197.7 ± 98.2, P < 0.05). In the CP rat models, both the expressions of Claudin-1 (823.0 ± 100.1, P < 0.01) and Occludin (1160.0 ± 32.2, P < 0.05) were significantly increased. The expression of Claudin-1 was remarkably down-regulated by musk (764.9 ± 179.0), olibanum (468.4 ± 220.4), and musk + olibanum (335.1 ± 204.0) (all P < 0.05), but that of Claudin-3 up-regulated by musk (744.6 ± 94.5) and olibanum (700.1 ± 223.7) (both P < 0.05). The expression of Occludin was reduced by musk (615.0 ± 221.0), olibanum (749.6 ± 321.7), and musk + olibanum (505.8 ± 523.7), while that of ZO-1 increased by olibaum (443.2 ± 44.9) and decreased by musk + olibanum (213.5 ± 24.9, P < 0.05).
CONCLUSIONIn physiological and pathological conditions, the combination of musk and olibanum acts on the expressions of tight junction proteins in prostate epithelial cells in a selective and dual-targeting manner, promoting their permeability by down-regulating the expression of ZO-1 and maintaining their structural stability by regulating the expressions of Claudin-1, Claudin-3, and Occludin.
Animals ; Claudins ; metabolism ; Down-Regulation ; Epithelial Cells ; drug effects ; Fatty Acids, Monounsaturated ; chemistry ; Frankincense ; chemistry ; Male ; Occludin ; metabolism ; Prostate ; cytology ; Prostatitis ; Rats ; Rats, Sprague-Dawley ; Tight Junction Proteins ; metabolism ; Up-Regulation
9.Activation of cofilin and its relation with distribution of tight junction protein zonula occludens 1 in hypoxic human intestinal epithelial cells.
Wen HE ; Pei WANG ; Jian ZHANG ; Fengjun WANG
Chinese Journal of Burns 2015;31(2):116-121
OBJECTIVETo study the effect of hypoxia on cofilin activation in intestinal epithelial cells and its relation with distribution of tight junction protein zonula occludens 1 (ZO-1).
METHODSThe human intestinal epithelial cell line Caco-2 was used to reproduce monolayer cells. The monolayer-cell specimens were divided into control group (no treatment), hypoxic group ( exposed to hypoxia), and normoxic group (exposed to normoxia) according to the random number table. Western blotting was used to detect the protein expressions of cofilin and phosphorylatedl cofilin (p-cofilin) of cells in normoxic group and hypoxic group exposed to normoxia or hypoxia for 1, 2, 6, 12, and 24 h and control group, with 9 samples in control group and 9 samples at each time point in the other two groups. The other monolayer-cell specimens were divided into hypoxic group (exposed to hypoxia) and control group (no treatment) according to the random number table. Cells in hypoxic group exposed to hypoxia for 1, 2, 6, 12, and 24 h and control group were obtained. Morphology and distribution of F-actin was observd with laser scanning confocal microscopy, the ratio of F-actin to G-actin was determined by fluorescence method, and distribution of ZO-l and cellular morphology were observed with laser scanning confocal microscopy. The sample number of last 3 experiments was respectively 3, 6, and 3 in both hypoxic group (at each time point) and control group. Data were processed with paired ttest, analysis of variance of repeated measurement, and LSD-t test.
RESULTSThe protein expressions of cofilin and p-cofilin of cells between normoxic group exposed to normoxia for 1 to 24 h and control group showed no significant changes (with values from -0.385 to 1.701, t(p-cofilin)values from 0. 040 to 1.538, P values above 0.05). There were no obvious differences in protein expressions of en filmn of cells between hypoxic group exposed to hypoxia for 1 to 24 h and control group ( with values from 1.032 to 2.390, P values above 0.05). Compared with that in control group, the protein expressions of p-cofilin of cells were greatly reduced in hypoxic group exposed to hypoxia for 1 to 24 h (with values from 4.563 to 22.678, P values below 0.01), especially exposed to hypoxia for 24 h. The protein expressions of cofilin of cells between normoxic group and hypoxic group at each time point were close ( with t values from -0.904 to 1.433, P values above 0.05). In hypoxic group, the protein expressions of p-cofilin of cells exposed to hypoxia for 1, 2, 6, 12, and 24 h were 0.87 +/- 08, 0.780 .05, 0.89 +/- 0.07, 0.68+0. 07, and 0.57 +/- 0.06, respectively, significantly lower than those in normoxic group (0.90 +/- 0.07, 0.97 +/- 0.06, 1.00 +/- 0.06, 1.00 +/- 0.05, and 0.99 +/- 0.05, with t values from 3.193 to 16.434, P values below 0.01). In control group, F-actin in the cytoplasm was abundant, most of it was in bunches. The trend of F-actin was disorderly in hypoxic group from being exposed to hypoxia for 1 h, shortened in length or even dissipated. The ratios of F-actin to G-actin of cells in hypoxic group exposed to hypoxia for 12 and 24 h (0.89 +/- 0.12 and 0.84 +/- 0.19) were obviously decreased as compared with that in control group (1. 00, with t values respectively 3. 622 and 3. 577, P values below 0.01). There were no obvious differences in the ratios of F-actin to G-actin of cells between hypoxic group exposed to hypoxia for 1, 2, and 6 h and control group ( with values from 0.447 to 1.526, P values above 0.05). In control group, cells were compact in arrangement, and ZO-1 was distributed continuously along the cytomnembrane. From being exposed to hypoxia for 2 h, cells became irregular in shape in hypoxic group. ZO-1 was distributed in discontinuous fashion along the cytomembrane with breakage in hypoxic group exposed to hypoxia for 24 h.
CONCLUSIONSHypoxia may cause the disorder of dynamic balance between F-actin and G-actin by inducing cofilin activation, which in turn leads to the changes in distribution of tight junction protein ZO-1 in intestinal epithelial cells.
Actin Depolymerizing Factors ; Actins ; Blotting, Western ; Caco-2 Cells ; drug effects ; physiology ; Epithelial Cells ; cytology ; drug effects ; Humans ; Hypoxia ; metabolism ; Intestinal Mucosa ; drug effects ; metabolism ; pathology ; Intestines ; Oxygen ; pharmacology ; Tight Junctions ; drug effects ; metabolism ; Zonula Occludens-1 Protein ; metabolism
10.Effects of simvastatin on the proliferation and apoptosis of prostatic epithelial RWPE-1 cells.
Ming-gen YANG ; Zhou-da ZHENG ; Hai-li LIN ; Zhi-ming ZHUANG ; Tian-qi LIN
National Journal of Andrology 2015;21(2):113-118
OBJECTIVETo investigate the effects of simvastatin on the proliferation and apoptosis of prostatic epithelial RWPE-1 cells.
METHODSRWPE-1 cells cultured in vitro were treated with simvastatin at 0, 10, 20, and 40 μmol/L for 24, 48, and 72 hours followed by determination of their proliferation by MTT assay, and their apoptosis by flow cytometry. The mRNA and protein expressions of Bcl-2, Bax, and Cx43 were detected by fluorescence quantitative RT-PCR and Western blot, respectively.
RESULTSAfter 72 hours of treatment with simvastatin at 10, 20, and 40 μmol/L, the inhibition rates of the RWPE-1 cells were (21.07 ± 6.41)%, (34.87 ± 9.65)%, and (47.18 ± 10.88)%, respectively, significantly higher than (1.21 ± 0.54)% in the control group (P < 0.05) and in a dose-dependent manner (P < 0.05); the cell apoptosis rates were (0.066 ± 0.016)%, (0.126 ± 0.023)%, and (0.192 ± 0.025)%, respectively, remarkably higher than (0.015 ± 0.005)% in the control (P < 0.05) and also in a dose-dependent manner (P < 0.05); the mRNA and protein expressions of Bcl-2 were decreasing while those of Bax and Cx43 increasing with the increased concentration of simvastatin (P < 0.05). The expression of Cx43 was correlated negatively with that of Bcl-2 but positively with that of Bax.
CONCLUSIONSimvastatin inhibits the proliferation of prostate epithelial cells and induce their apoptosis by acting on the gap junctional intercellular communication.
Apoptosis ; drug effects ; Cell Proliferation ; drug effects ; Connexin 43 ; metabolism ; Drug Administration Schedule ; Epithelial Cells ; drug effects ; physiology ; Humans ; Hypolipidemic Agents ; pharmacology ; Male ; Prostate ; cytology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; RNA, Messenger ; metabolism ; Simvastatin ; pharmacology ; bcl-2-Associated X Protein ; metabolism

Result Analysis
Print
Save
E-mail