1.Effect of ketotifen fumarate on experimental autoimmune orchitis and torsion of the spermatic cord.
Diego MORENO ; Cristian M SOBARZO ; Livia LUSTIG ; Marcelo G RODRÍGUEZ PEÑA ; Vanesa Anabella GUAZZONE
Asian Journal of Andrology 2020;22(1):112-117
The aim of this work was to study effects of ketotifen fumarate (KF) on prevention of tissue damage in testes of rats with experimental autoimmune orchitis (EAO) and on the contralateral testis in a model of prolonged testicular cord torsion (TCT). Rats with EAO or TCT were injected intraperitoneally once daily with KF or saline solution (vehicle group). Incidence and severity of testicular damage were evaluated by histopathology using an EAO score or a Johnsen score. Mast cells (MC) were identified by histochemistry and quantified. In EAO model, KF significantly reduced severity of histopathological testicular damage compared to rats in the vehicle group. KF also reduced the number of testicular MC compared to vehicle group. Similarly, in TCT model, multifocal damage of the contralateral testis was observed 30 days after testicular torsion characterized by sloughing of the germinal epithelium, seminiferous tubule atrophy, and interstitial edema. Focal signs of inflammation and fibrosis of seminiferous tubular walls were also observed. In contrast, sections of contralateral testis of rats injected with KF and killed 30 days after surgery showed normal histological features. A significant decrease in the number of MC was observed in rats treated with KF compared to untreated animals. In conclusion, we demonstrated that treatment with KF reduced testicular inflammatory process and MC infiltrates in both EAO and TCT models. The results suggest a promising treatment for infertile male patients with testicular pathologies associated with inflammation and germ cell loss.
Animals
;
Autoimmune Diseases/pathology*
;
Cell Count
;
Epididymis/pathology*
;
Epididymitis/pathology*
;
Histamine H1 Antagonists/pharmacology*
;
Hypersensitivity, Delayed
;
Immunity, Cellular/drug effects*
;
Ketotifen/pharmacology*
;
Male
;
Mast Cells/pathology*
;
Orchitis/pathology*
;
Rats
;
Severity of Illness Index
;
Spermatic Cord Torsion/pathology*
;
Testis/pathology*
;
Vaccination
2.Effect of Erxian Decoction on cyclophosphamide-induced oligospermia in mice.
Bo LIU ; Ye-Zi LI ; Qi WU ; Shuo YANG ; Ying WANG ; Hui-Hui XIE ; Zhi-Wen LIU
National Journal of Andrology 2018;24(6):547-552
ObjectiveTo study the effect of Erxian Decoction (EXD) on oligospermia (OS) induced by cyclophosphamide in mice.
METHODSEighty 6-week-old male Kunming mice were randomly divided into five groups of equal number, normal control, OS model control, and low-, medium- and high-dose EXD, the former two groups treated intragastrically with normal saline and the latter three with EXD at 3, 6 and 12 g per kg of the body weight qd for 30 days. From the 21st day of administration, the mice of the normal control group were injected intraperitoneally with saline and those of the other four groups with cyclophosphamide at 80 mg per kg of the body weight qd for 5 consecutive days. At 24 hours after the last gavage, the bilateral epididymides of the mice were collected and sperm suspension prepared for determination of the sperm count and motility, and the bilateral testes were harvested for histomorphological observation and measurement of the concentrations of superoxide dismutase (SOD), malondialdehyde (MAD) and glutathione (GSH) in the testis tissue.
RESULTSCompared with the normal controls, the mice of the OS model control group showed significant decreases in epididymal sperm concentration ([9.31 ± 1.32] vs [3.32 ± 1.13]×107/ml, P <0.01) and motility ([44.75 ± 8.12]% vs [25.95 ± 11.41], P<0.01) and the concentrations of SOD ([37.27 ± 0.99] vs [14.23 ± 1.99] U/mg prot, P <0.01) and GSH ([101.55 ± 8.74] vs [58.77 ± 8.93] μmol/L, P <0.01) but an obvious increase in the MDA level ([2.21 ± 0.65] vs [2.61 ± 0.15] nmol/mg prot, P <0.05) in the testis tissue. In comparison with the OS model controls, the mice treated with low-, medium- and high-dose EXD exhibited significantly increased epididymal sperm concentration ([8.34 ± 2.59], [8.59 ± 1.10] and [8.41 ± 1.47]×107/ml) (P <0.01) and motility ([36.04 ± 12.33]%, [38.87 ± 13.13]% and [41.90 ± 8.09]%) (P <0.01) and concentrations of SOD ([22.99 ± 1.11], [20.82 ± 1.81] and [21.33 ± 1.66] U/mg prot) (P <0.01) and GSH ([104.74 ± 2.47], [98.61 ± 12.98] and [108.89 ± 5.85] μmol/L) (P <0.01) but decreased level of MDA (P <0.05).
CONCLUSIONSErxian Decoction can improve cyclophosphamide-induced reduction of sperm concentration and motility, which might be associated with its abilities of resisting oxidation and reducing oxidative stress injury.
Animals ; Cyclophosphamide ; Drugs, Chinese Herbal ; pharmacology ; Epididymis ; Glutathione ; analysis ; Male ; Malondialdehyde ; analysis ; Mice ; Oligospermia ; chemically induced ; drug therapy ; Oxidative Stress ; Random Allocation ; Sperm Count ; Sperm Motility ; drug effects ; physiology ; Spermatozoa ; drug effects ; Superoxide Dismutase ; analysis ; Testis ; anatomy & histology ; chemistry ; drug effects
3.Zhibai Dihuang Decoction improves sperm mitochondrial permeability transition in rats with ureaplasma urealyticum infection.
Dong-Hua BIN ; Sun-Ya WANG ; Qing ZHOU ; Qing-Hu HE
National Journal of Andrology 2018;24(6):540-546
ObjectiveTo investigate the effects of Zhibai Dihuang Decoction (ZDD) on sperm mitochondrial permeability transition (MPT) in the rat model of ureaplasma urealyticum (UU) infection (UUI).
METHODSNinety male SD rats were randomly divide into five groups: normal control, UUI model control, ZDD, doxycycline, and ZDD + doxycycline. The UUI model was established in the latter four groups of rats by UU injection into the bladder. On the second day after modeling, the animals of the normal control and UUI model control groups were treated intragastrically with 0.9% sodium chloride solution and those in the other groups with corresponding drugs, all for 21 consecutive days. At 24 hours after drug withdrawal, epididymal samples were obtained for detection of the protein and mRNA expressions of VDAC2 and ANT4 in the sperm mitochondria by RT-PCR and Western blot respectively and determination of the contents of adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) and energy charge (EC) in the sperm mitochondria by high-performance liquid chromatography.
RESULTSThe protein expressions of VDAC2 and ANT4 in the rat sperm mitochondria were 0.626 ± 0.074 and 0.527 ± 0.096 in the normal control group, 0.039 ± 0.011 and 0.044 ± 0.011 in the UUI model control group, 0.101 ± 0.037 and 0.127 ± 0.040 in the ZDD group, 0.236 ± 0.070 and 0.253 ± 0.054 in the doxycycline group, and 0.475 ± 0.064 and 0.367 ± 0.086 in the ZDD + doxycycline group, significantly lower in the UUI model control than in the normal control group (P<0.05 and P<0.01), but remarkably higher in the doxycycline and ZDD + doxycycline groups than in the UUI model control (P<0.01) and the ZDD group (P<0.05 and P<0.01), and the expression of VDAC2 was markedly higher in the ZDD + doxycycline than in the doxycycline group (P<0.01). The mRNA expressions of VDAC2 and ANT4 were 0.008 ± 0.001 035 and 0.026 50 ± 0.003 401 in the normal control group, 0.000 79 ± 0.000 226 and 0.001 64 ± 0.000 205 in the UUI model controls, 0.002 06 ± 0.000 861 and 0.005 04 ± 0.002 537 in the ZDD group, 0.003 34 ± 0.000 229 and 0.008 57 ± 0. 000 690 in the doxycycline group, and 0.004 85 ± 0.000 495 and 0.013 13 ± 0.000 826 in the ZDD + doxycycline group, significantly lower in the UUI model control than in the normal control group (P<0.05 and P<0.01), but remarkably higher in the ZDD, doxycycline and ZDD + doxycycline groups than in the UUI model controls (P<0.01) as well as in the doxycycline and ZDD + doxycycline groups than in the ZDD group (P<0.01) and in the ZDD + doxycycline than in the doxycycline group (P<0.01). The levels of ATP, ADP, AMP and EC in the sperm mitochondria were (203.41 ± 13.16) mg/L, (129.87 ± 14.68) mg/L, (149.05 ± 5.65) mg/L and 0.56 ± 0.01 in the normal control group, (96.22 ± 12.55) mg/L, (99.87 ± 3.28) mg/L, (212.53 ± 19. 43) mg/L and 0.36 ± 0.03 in the UUI model control group, (101.99 ± 5.97) mg/L, (104.99 ± 16.40) mg/L, (183.97 ± 12.43) mg/L and 0.40 ± 0.01 in the ZDD group, (159.44 ± 33.16) mg/L, (118.51 ± 12.99) mg/L, (160.64 ± 14.19) mg/L and 0.50 ± 0.06 in the doxycycline group, and (194.07 ± 9.36) mg/L, (121.62 ± 9.41) mg/L, (150.21 ± 12.87) mg/L and 0.55 ± 0.01 in the ZDD + doxycycline group. The levels of ATP and EC were significantly lower and that of AMP higher in the UUI model control than in the normal control group (P<0.01), while the former two were remarkably higher and the latter one lower in the doxycycline and ZDD + doxycycline groups than in the UUI model controls (P<0.05 and P<0.01). Compared with the ZDD + doxycycline group, the ZDD group showed significantly decreased ATP and EC but increased AMP, while the doxycycline group exhibited decreases in both ATP and EC (P<0.05 and P<0.01).
CONCLUSIONSZDD can upregulate the decreased protein and mRNA expressions of VDAC2 and ANT4 in the sperm mitochondria and improve sperm mitochondrial permeability transition and mitochondrial energy metabolism in rats with UU infection, which may be one of its action mechanisms in the treatment of UU infection-induced male infertility.
Animals ; Anti-Bacterial Agents ; therapeutic use ; Doxycycline ; therapeutic use ; Drugs, Chinese Herbal ; metabolism ; therapeutic use ; Energy Metabolism ; Epididymis ; Humans ; Infertility, Male ; Male ; Mitochondria ; drug effects ; Permeability ; drug effects ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Spermatozoa ; drug effects ; Ureaplasma Infections ; drug therapy ; Ureaplasma urealyticum ; Voltage-Dependent Anion Channel 2 ; metabolism
4.Antagonistic effect of vitamin E on di-2-ethylhexyl phthalate-induced reproductive toxicity in male rats.
Chao-Yun WANG ; Juan-Juan ZHANG ; Peng DUAN
National Journal of Andrology 2018;24(7):589-595
ObjectiveTo explore the antagonistic effect of vitamin E (VE) on male reproductive toxicity induced by di-2-ethylhexyl phthalate (DEHP) in pubertal SD rats and its underlying mechanisms.
METHODSThirty 5-week-old male SD rats were randomly divided into five groups of equal number, corn oil control, low-dose (10 mg/kg/d), medium-dose (100 mg/kg/d) and high-dose DEHP exposure (500 mg/kg/d), and VE intervention (high-dose DEHP + VE [100 mg/kg/d]), and treated respectively for 30 successive days. At 3 days after treatment, the testes of the animals were harvested for determination of the oxidative stress index, serum reproductive hormone levels, cauda epididymal sperm parameters, and expressions of cell apoptosis-related genes and proteins.
RESULTSCompared with the control group, the rats of the medium- and high-dose DEHP groups showed significant decreases in the levels of such serum reproductive hormones as follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone (T), sperm parameters as average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), straightness (STR), linearity (LIN) and wobble (WOB), and the activities of superoxide dismutase (SOD) and glutathione peroxide (GSH-Px), but significant increases were observed in the latter two groups in the content of malondialdehyde (MDA)([3.32±0.87] nmol/mg pro vs [2.13±0.49] nmol/ mg pro), mRNA expressions of Bad, Bax, Cytochrome C, Caspase-3 and the Bax/Bcl-2 ratio, and protein expressions of Cytochrome C and Caspase-3. In comparison with the high-dose DEHP group, the VE intervention group exhibited remarkably increased serum LH and T levels, sperm VAP, VSL, VCL, STR and WOB, and activities of SOD and GSH-Px, but markedly decreased mRNA expressions of Bad, Bax, Cytochrome C, Caspase-3 and the Bax/Bcl-2 ratio as well as the protein expressions of Cytochrome C and Caspase-3 in the testis tissue (P<0.05).
CONCLUSIONSExposure to DEHP induces androgen secretion disorders, causes oxidative damage to the testicular tissue, activates the mitochondrial apoptosis pathway in the testis, and ultimately reduces the quality of epididymal sperm, while VE can protect the rat testis from DEHP-induced reproductive toxicity.
Animals ; Antioxidants ; pharmacology ; Apoptosis ; genetics ; Autophagy-Related Protein 5 ; metabolism ; Caspase 3 ; metabolism ; Diethylhexyl Phthalate ; antagonists & inhibitors ; Epididymis ; Follicle Stimulating Hormone ; blood ; Luteinizing Hormone ; blood ; Male ; Malondialdehyde ; metabolism ; Mitochondria ; drug effects ; Oxidative Stress ; drug effects ; Oxidoreductases ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Reproduction ; Spermatozoa ; drug effects ; physiology ; Superoxide Dismutase ; metabolism ; Testis ; drug effects ; Testosterone ; blood ; Vitamin E ; pharmacology
5.Lipoic acid protects spermatogenesis in male rats with ornidazole-induced oligoasthenozoospermia.
Guo-Wei ZHANG ; Xiu-Xia WAN ; Chang-Chun WAN ; Kai-Qiang LI ; Yi-Ze LI ; Zhi-Qiang WENG ; Xue-Jun SHANG
National Journal of Andrology 2018;24(4):297-303
ObjectiveTo study the protective effect of lipoic acid (LA) on the spermatogenic function of the male rats with oligoasthenozoospermia induced by ornidazole (ORN).
METHODSSeventy male SD rats were equally randomized into groups A (solvent control: 1 ml 0.5% CMC-Na + 1 ml olive oil), B (low-dose ORN model: 400 mg/kg ORN suspension + 1 ml olive oil), C (low-dose ORN + low-dose LA treatment: 400 mg/kg ORN + 50 mg/kg LA), D (low-dose ORN + high-dose LA treatment: 400 mg/kg ORN + 100 mg/kg LA), E (high-dose ORN model: 800 mg/kg ORN suspension + 1 ml olive oil), F (high-dose ORN + low-dose LA treatment: 800 mg/kg ORN + 50 mg/kg LA), and G (high-dose ORN + high-dose LA treatment: 800 mg/kg ORN + 100 mg/kg LA), and treated respectively for 20 successive days. Then all the rats were sacrificed and the weights of the body, testis, epididymis and seminal vesicle obtained, followed by calculation of the organ index, determination of epididymal sperm concentration and motility, and observation of the histomorphological changes in the testis and epididymis by HE staining.
RESULTSCompared with group A, group E showed significantly decreased body weight ([117.67 ± 11.53] vs [88.11 ± 12.65] g, P < 0.01) and indexes of the testis ([1.06 ± 0.12] vs [0.65 ± 0.13] %, P < 0.01) and epididymis ([0.21 ± 0.03] vs [0.17 ± 0.01] %, P < 0.01). In comparison with group E, group F exhibited remarkable increases in the epididymal index ([0.17 ± 0.01] vs [0.20 ± 0.02] %, P < 0.01), and so did group G in the body weight ([88.11 ± 12.65] vs [102.70 ± 16.10] g, P < 0.05) and the indexes of the testis ([0.65 ± 0.13] vs [0.95 ± 0.06] %, P < 0.01) and epididymis ([0.17 ± 0.01] vs [0.19 ± 0.02] %, P < 0.05), but no obvious difference was observed in the index of seminal vesicle among different groups. Compared with group A, group B manifested significant decreases in sperm motility ([74.12 ± 8.73] vs [40.25 ± 6.08] %, P < 0.01), and so did group E in sperm count ([38.59 ± 6.40] vs [18.67 ± 4.59] ×105/100 mg, P < 0.01) and sperm motility ([74.12 ± 8.73] vs [27.58 ± 8.43] %, P < 0.01). Sperm motility was significantly lower in group B than in C and D ([40.25 ± 6.08] vs [58.13 ± 7.62] and [76.04 ± 8.44]%, P < 0.01), and so were sperm count and motility in group E than in F and G ([18.67 ± 4.59] vs [25.63 ± 9.66] and [29.92 ± 4.15] ×105/100 mg, P < 0.05 and P < 0.01; [27.58 ± 8.43] vs [36.56 ± 11.08] and [45.05 ± 9.59] %, P < 0.05 and P < 0.01). There were no obvious changes in the histomorphology of the testis and epididymis in groups A, B, C and D. Compared with group A, group E showed necrotic and exfoliated spermatogenic cells with unclear layers and disorderly arrangement in the seminiferous tubules and remarkably reduced sperm count with lots of noncellular components in the epididymal cavity, while groups F and G exhibited increased sperm count in the seminiferous tubules and epididymis lumen, also with exfoliation, unclear layers and disorderly arrangement of spermatogenic cells, but significantly better than in group E.
CONCLUSIONSLA can reduce ORN-induced damage to the spermatogenetic function of rats, improve sperm quality, and protect the reproductive system.
Animals ; Antioxidants ; pharmacology ; Asthenozoospermia ; chemically induced ; drug therapy ; Body Weight ; drug effects ; Epididymis ; anatomy & histology ; drug effects ; Male ; Oligospermia ; chemically induced ; drug therapy ; Ornidazole ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Seminal Vesicles ; anatomy & histology ; drug effects ; Seminiferous Tubules ; anatomy & histology ; drug effects ; Sperm Count ; Sperm Motility ; drug effects ; Spermatogenesis ; drug effects ; Spermatozoa ; drug effects ; Testis ; anatomy & histology ; drug effects ; Thioctic Acid ; pharmacology
6.Intervention effect of Modified Dahuang Zhechong Granule on epididymal morphological changes in experimental varicocele rats.
Quan-Sheng WANG ; Yue JIANG ; Hao-Te CHEN ; Yue-Liang WANG ; Bei ZHOU ; Bo DAI ; De-Fen YANG ; Ying-Ying QIN ; Feng LI ; En-Yi HU
National Journal of Andrology 2018;24(3):241-246
ObjectiveTo explore the effect of Modified Dahuang Zhechong Granule (MDZG) on the development and maturation of epididymal sperm in experimental varicocele (VC) rats.
METHODSSixty SD male rats were randomly divided into six groups of equal number, sham operation, VC model, Aescuven forte, and low-, medium- and high-dose MDZG. The model of left VC was made by the Turner method in all the rats except those of the sham operation group, followed by treatment with 0.9% normal saline for the animals in the sham operation and VC model groups, Aescuven forte tablets at 54 mg per kg of the body weight for those in the Aescuven forte group, and MDZG at 0.6, 1.2 and 2.4 g/ml for those in the low-, medium- and high-dose MDZG groups, all administered intragastrically qd for 8 successive weeks. Then, all the rats were sacrificed and their left epididymides harvested for examination of the quality of the epididymal sperm and the local microscopic and ultrastructural changes of the epididymal tissue.
RESULTSThe VC model rats showed significant apoptosis of the epididymal sperm cells, interstitial edema, microvascular dilatation, degeneration and degeneration of the epithelial cells, degeneration of some principal cells and basal cell vacuoles, and immature spermatids in the lumen. Sperm motility was significantly increased in the Aescuven forte and low-, medium- and high-dose MDZG groups as compared with the VC models (P <0.01). Both sperm concentration and motility were markedly higher in the high-dose MDZG than in the Aescuven forte group (P <0.05). Remarkable apoptosis of epididymal sperm cells was observed in the microenvironment of sperm development in the VC models, which exhibited no statistically significant difference from that in the rats of the medium- and high-dose MDZG groups.
CONCLUSIONSExperimental varicocele induced local apoptosis of epididymal sperm cells, interstitial edema and microvascular dilatation in the rat epididymis, while Modified Dahuang Zhechong Granule could improve the stability of epididymal sperm maturation and contribute to their development.
Aesculus ; chemistry ; Animals ; Apoptosis ; Drugs, Chinese Herbal ; pharmacology ; Edema ; chemically induced ; Epididymis ; drug effects ; Male ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Sperm Count ; Sperm Motility ; drug effects ; Spermatozoa ; cytology ; drug effects ; Varicocele ; chemically induced ; drug therapy ; pathology
7.Phyllanthus emblica leaf extract ameliorates testicular damage in rats with chronic stress.
Supatcharee ARUN ; Jaturon BURAWAT ; Supataechasit YANNASITHINON ; Wannisa SUKHORUM ; Akgpol LIMPONGSA ; Sitthichai IAMSAARD
Journal of Zhejiang University. Science. B 2018;19(12):948-959
Stress affects the male reproductive system and can cause sub-fertility or infertility. Although Phyllanthus emblica L. (PE) extract has been shown to have high antioxidant capacity and protective properties in damaged tissue, the preventive effects of PE extract on testicular function from stress-related impairment have never been demonstrated. This study aimed to investigate the effects of PE aqueous leaf extract on testicular impairment and protein marker changes in rats suffering from chronic stress. Adult male rats were divided into four groups: a control group, a chronic stress (CS) group, and two groups with CS that received different doses of PE extract (50 or 100 mg/kg body weight (BW)). In the treatment groups, the animals were given PE extract daily before stress induction for 42 consecutive days. Stress was induced through immobilization (4 h/d) followed by forced cold swimming (15 min/d). Sperm quality and the histology of the testes and caudal epididymis were examined, as were levels of serum corticosterone, testosterone, and malondialdehyde (MDA). The expressions of testicular steroidogenic acute regulatory (StAR) and tyrosine-phosphorylated proteins were investigated using immuno-Western blot analysis, as these proteins are assumed to play important roles in spermatogenesis and androgen synthesis. The results showed that PE (50 mg/kg BW) significantly increased sperm concentration and testosterone levels, while decreasing corticosterone levels, MDA levels, sperm head abnormalities, and acrosome-reacted sperm in CS rats. In addition, PE at both doses was found to diminish testicular histopathology in the CS rats. We also found that 50 mg/kg BW of PE significantly improved StAR protein expression and altered the intensities of some tyrosine-phosphorylated proteins in testis. We conclude that PE leaf extract at 50 mg/kg BW can prevent testicular damage in rats with CS.
Acrosome Reaction
;
Animals
;
Antioxidants/pharmacology*
;
Corticosterone/blood*
;
Epididymis/metabolism*
;
Male
;
Malondialdehyde/blood*
;
Phosphoproteins/metabolism*
;
Phosphorylation
;
Phyllanthus emblica/chemistry*
;
Plant Extracts/pharmacology*
;
Plant Leaves/chemistry*
;
Rats
;
Rats, Sprague-Dawley
;
Sperm Count
;
Spermatogenesis/drug effects*
;
Spermatozoa/drug effects*
;
Stress, Physiological
;
Testis/drug effects*
;
Testosterone/blood*
;
Tyrosine/chemistry*
8.Region-specific microRNA signatures in the human epididymis.
James A BROWNE ; Shih-Hsing LEIR ; Scott E EGGENER ; Ann HARRIS
Asian Journal of Andrology 2018;20(6):539-544
The epithelium of the human epididymis maintains an appropriate luminal environment for sperm maturation that is essential for male fertility. Regional expression of small noncoding RNAs such as microRNAs contributes to segment-specific gene expression and differentiated functions. MicroRNA profiles were reported in human epididymal tissues but not specifically in the epithelial cells derived from those regions. Here, we reveal miRNA signatures of primary cultures of caput, corpus, and cauda epididymis epithelial cells and of the tissues from which they were derived. We identify 324 epithelial cell-derived microRNAs and 259 tissue-derived microRNAs in the epididymis, some of which displayed regionalized expression patterns in cells and/or tissues. Caput cell-enriched miRNAs included miR-573 and miR-155. Cauda cell-enriched miRNAs included miR-1204 and miR-770. Next, we determined the gene ontology pathways associated with in silico predicted target genes of the differentially expressed miRNAs. The effect of androgen receptor stimulation on miRNA expression was also investigated. These data show novel epithelial cell-derived miRNAs that may regulate the expression of important gene networks that are responsible for the regionalized gene expression and function of the epididymis.
Adult
;
Androgens/pharmacology*
;
Computer Simulation
;
Epididymis/metabolism*
;
Epithelial Cells/metabolism*
;
Epithelium/metabolism*
;
Gene Expression Profiling
;
Gene Regulatory Networks/drug effects*
;
Humans
;
Male
;
MicroRNAs/genetics*
;
Primary Cell Culture
;
Receptors, Androgen/metabolism*
;
Sequence Analysis, RNA
9.Protective effect of astaxanthin against epididymal oxidative damagein rats with ornidazole-induced oligoasthenozoospermia.
Wei LIU ; Xiao-Fang KANG ; Guo-Wei ZHANG ; Hong-Cai CAI ; Kai-Qiang LI ; Ling-Ling WANG ; Xue-Jun SHANG
National Journal of Andrology 2017;23(3):206-211
Objective:
To investigate the improving effect of astaxanthin (AST) on the sperm quality of rats with ornidazole (ORN)-induced oligoasthenozoospermiaand its action mechanism.
METHODS:
Forty adult male SD rats were equally randomized into groups A (solvent control), B (low-dose ORN [400 mg/(kg·d)]), C (high-dose ORN [800 mg/(kg·d)]), D (low-dose ORN [400 mg/(kg·d)] + AST [20 mg/(kg·d)]), and E (high-dose ORN [800 mg/(kg·d)] + AST [20 mg/(kg·d)]), all treated intragastrically for3 weeks.After treatment, the epididymal tails ononeside was taken for determination of sperm concentration and activity, and the epididymideson the other side harvested for measurement of the activities of GSH-Px, GR, CAT and SOD and the MDA contentin the homogenate.
RESULTS:
Compared with group A, sperm motilityin the epididymal tail andGSH-Px and SOD activities in theepididymiswere markedly decreased while the MDAcontent significantlyincreased in group B (P<0.05), spermmotility and concentrationin the epididymal tail, testisindex, and the activities of GSH-Px, GR, CAT and SOD in the epididymis were remarkably reduced while theMDA contentsignificantly increased in group C(P<0.05). In comparison with group B, group D showed markedly increased sperm motility ([45.3±8.7]% vs [66.3±8.9]%, P<0.05) in the epididymal tail and SOD activity in the epididymis ([116.7±25.3] U/mg prot vs [146.1±23.8] U/mg prot, P<0.05), decreased MDA content([1.68±0.45] nmol/mg prot vs [1.19±0.42] nmol/mg prot, P<0.05).Compared with group C, group Eexhibited significant increases in the weight gained ([89.0±9.5] vs [99.9±4.1] %, P<0.05) and sperm motility ([17.9±3.5]% vs [27.3±5.3] %, P<0.05) but a decrease in the content of MDA ([2.03±0.30] nmol/mg prot vs [1.52±0.41] nmol/mg prot, P<0.05).
CONCLUSIONS
AST can improve spermquality in rats with ORN-inducedoligoasthenozoospermia, which may be associated with its enhancing effect on the antioxidant capacity of the epididymis.
Animals
;
Antioxidants
;
pharmacology
;
Asthenozoospermia
;
prevention & control
;
Epididymis
;
drug effects
;
metabolism
;
Male
;
Oligospermia
;
prevention & control
;
Ornidazole
;
Oxidative Stress
;
Protective Agents
;
pharmacology
;
Radiation-Sensitizing Agents
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Sperm Count
;
Sperm Motility
;
Spermatozoa
;
drug effects
;
metabolism
;
Xanthophylls
;
pharmacology
10.Tongjingling improves sperm DNA integrity and reduces oxidative stress in the testis of experimental varicocele rats.
Bao-Xin DU ; Jun-Zhuang ZHENG ; Bing LIU ; Fang-Ze TAO ; Yue-Kun FANG ; Wen-Li XU ; Yun CUI
National Journal of Andrology 2017;23(11):1025-1031
Objective:
To explore the protective effect of Tongjingling (TJL) against sperm DNA damage and oxidative stress in the rat model of experimental varicocele (EVC).
METHODS:
We randomly divided 75 Wistar male rats into five groups of equal number: sham operation, EVC model, high-dose TJL, mid-dose TJL, and low-dose TJL. The EVC model was established in the rats by partial ligation of the left renal vein, followed by 8 weeks of medication from the 4th week after modeling. Then we observed the general status of the rats, detected the sperm DNA fragmentation index (DFI) in the epididymis by sperm chromatin structure assay (SCSA), and measured the content of hydroperoxide (H2O2) and the activities of catalase (CAT) and superoxide dismutase (SOD) in the testis by colorimetry.
RESULTS:
Compared with the sham operation group, the EVC models showed significantly increased sperm DFI in the epididymis (P <0.01) and elevated level of H2O2 and activities of CAT and SOD in the testis (P <0.01). In comparison with the EVC models, the rats of the TJL groups exhibited remarkably reduced sperm DFI and H2O2 content, but increased activities of SOD and CAT.
CONCLUSIONS
TJL can improve sperm DNA integrity by increasing the activities of SOD and CAT and reducing the H2O2 level and hence oxidative stress in the testis tissue.
Animals
;
Catalase
;
analysis
;
DNA
;
drug effects
;
DNA Fragmentation
;
Drugs, Chinese Herbal
;
pharmacology
;
Epididymis
;
chemistry
;
Humans
;
Hydrogen Peroxide
;
analysis
;
Ligation
;
Male
;
Oxidative Stress
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Spermatozoa
;
Superoxide Dismutase
;
analysis
;
Testis
;
chemistry
;
drug effects
;
Varicocele
;
etiology
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail