1.Chemotherapy-induced Drug Reaction due to Extravasation of Vinorelbine.
Min Soo JANG ; Joon Hee KIM ; Myeong Hyeon YANG ; Kang Hoon LEE ; Sang Hwa HAN ; Kee Suck SUH
Korean Journal of Dermatology 2016;54(5):372-376
		                        		
		                        			
		                        			Vinorelbine, a vinca alkaloid anticancer drug, is widely used to treat various cancers. Several dermatological side effects of vinorelbine, such as acral erythema, phlebitis, and severe extravasation reactions, have been reported. Vinorelbine is categorized as non-DNA binding vesicant that undergoes high metabolism and clearance, which limits the degree of tissue injury if extravasation occurs. A 73-year-old male presented with erythematous linear patches on his left wrist and a 51-year-old male presented with erythematous eroded patches and bullae on his right forearm. Histopathologic study showed interface changes with basal vacuolar degeneration and epidermal dysmaturation. Separation of the dermis from the epidermis was observed, as well as interstitial and perivascular inflammatory infiltrates in the dermis. Both patients were being treated with vinorelbine for lung cancer. Before the onset of the skin lesions, accidental intravenous extravasation of vinorelbine had occurred. Herein, we report two cases of chemotherapy induced drug reaction due to extravasation of vinorelbine.
		                        		
		                        		
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Cytochrome P-450 CYP1A1
		                        			;
		                        		
		                        			Dermis
		                        			;
		                        		
		                        			Drug Therapy
		                        			;
		                        		
		                        			Epidermis
		                        			;
		                        		
		                        			Erythema
		                        			;
		                        		
		                        			Forearm
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Metabolism
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Phlebitis
		                        			;
		                        		
		                        			Skin
		                        			;
		                        		
		                        			Vinca
		                        			;
		                        		
		                        			Wrist
		                        			
		                        		
		                        	
2.Effects of transfection of human epidermal growth factor gene with adenovirus vector on biological characteristics of human epidermal cells.
Kai YIN ; Li MA ; Chuan'an SHEN ; Yuru SHANG ; Dawei LI ; Longzhu LI ; Dongxu ZHAO ; Wenfeng CHENG
Chinese Journal of Burns 2016;32(5):305-311
OBJECTIVETo investigate the suitable transfection condition of human epidermal cells (hECs) with human epidermal growth factor (EGF) gene by adenovirus vector (Ad-hEGF) and its effects on the biological characteristics of hECs.
METHODShECs were isolated from deprecated human fresh prepuce tissue of circumcision by enzyme digestion method and then sub-cultured. hECs of the third passage were used in the following experiments. (1) Cells were divided into non-transfection group and 5, 20, 50, 100, 150, and 200 fold transfection groups according to the random number table (the same grouping method below), with 3 wells in each group. Cells in non-transfection group were not transfected with Ad-hEGF gene, while cells in the latter six groups were transfected with Ad-hEGF gene in multiplicities of infection (MOI) of 5, 20, 50, 100, 150, and 200 respectively. The morphology of the cells was observed with inverted phase contrast microscope, and expression of green fluorescent protein of the cells was observed with inverted fluorescence microscope at transfection hour (TH) 24, 48, and 72. (2) Another three batches of cells were collected, grouped, and treated as above, respectively. Then the transfection rate of Ad-hEGF gene was detected by flow cytometer (n=3), the mass concentration of EGF in culture supernatant of cells was detected by enzyme-linked immunosorbent assay (n=6), and the proliferation activity of cells was detected by cell counting kit 8 (CCK8) and microplate reader (n=6) at TH 24, 48, and 72, respectively. (3) Cells were collected and divided into non-transfection group and transfection group, with 6 wells in each group. Cells in non-transfection group were cultured with culture supernatant of cells without transfection, while cells in transfection group were cultured with culture supernatant of cells which were transfected with Ad-hEGF gene in the optimum MOI (50). CCK8 and microplate reader were used to measure the biological activity of EGF secreted by cells on culture day 1, 3, and 5. (4) Cells were collected and divided into non-transfection group and transfection group, with 12 wells in each group. Cells in non-transfection group were not transfected with Ad-hEGF gene, while cells in transfection group were transfected with Ad-hEGF gene in the optimum MOI (50). The expression levels of cytokeratin 14 (CK14) and CK19 of cells were measured by immunofluorescence staining at TH 24. (5) Cells were collected, grouped, and treated as in (4), with 6 wells in each group. At post scratch hour (PSH) 0 (immediately after scratch), 12, 24, and 48, the migration distance of cells was observed and measured with inverted phase contrast microscope. Data were processed with analysis of variance of factorial design, analysis of variance for repeated measurement, and LSD test.
RESULTS(1) At TH 24 and 48, morphology of cells in each transfection group and non-transfection group were similar. Compared with that in non-transfection group, the cell debris increased significantly in 200 fold transfection group at TH 72. At TH 24, 48, and 72, the expression of green fluorescent protein was not seen in cells of non-transfection group, whereas it increased in cells of transfection group over transfection time. (2) The transfection rate of Ad-hEGF gene of cells in each transfection group increased gradually over transfection time. At TH 72, the transfection rates of Ad-hEGF gene of cells in 50-200 fold transfection groups were all above 90%, while the transfection rates of Ad-hEGF gene of cells in non-transfection group, 5, and 20 fold transfection groups were (0.51±0.20)%, (62.44±6.23)%, and (75.00±5.43)% respectively, which were obviously lower than the rate in 50 fold transfection group [(93.12±2.55)%, with P values below 0.01]. The mass concentration of EGF in culture supernatant of cells in each transfection group increased gradually over transfection time. At TH 72, the mass concentration of EGF in culture supernatant of cells in 50 fold transfection group was obviously higher than that in each of the other groups (with P values below 0.01). The proliferation activity of cells in each group at TH 24 and 48 was similar (with P values above 0.05). At TH 72, the proliferation activity of cells in 200 fold transfection group was obviously lower than that in other groups (with P values below 0.05). (3) On culture day 1, the biological activity of EGF secreted by cells in two groups was similar (P>0.05). On culture day 3 and 5, the biological activity of EGF secreted by cells in transfection group were obviously higher than that in non-transfection group (with P values below 0.01). (4) At TH 24, the expression levels of CK14 and CK19 of cells in transfection group were higher than those in non-transfection group. (5) The width of scratch in two groups was nearly the same at PSH 0. At PSH 12-48, the migration distance of cells in transfection group was obviously longer than that in non-transfection group (with P values below 0.01).
CONCLUSIONSThe suitable range of MOI of hECs transfected with Ad-hEGF gene is 50-150, and 50 is the optimum. hECs transfected with Ad-hEGF gene with MOI 50 can effectively express the EGF gene and keep its good abilities of proliferation, differentiation, and migration, as well.
Adenoviridae ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; EGF Family of Proteins ; genetics ; metabolism ; Epidermis ; cytology ; Genetic Vectors ; Humans ; Keratins ; metabolism ; Male ; Transfection
3.Effects of estrogen on epidermis growth of mice and proliferation of human epidermal cell line HaCaT and its mechanism.
Tao ZHOU ; Jing CHEN ; Zongwei HUANG ; Li FANG ; Yu CHEN ; Yajie CHEN ; Yizhi PENG
Chinese Journal of Burns 2016;32(5):299-304
OBJECTIVETo observe the effects of estrogen on epidermis growth of mice and proliferation of keratinocytes (human epidermal cell line HaCaT), and to explore its mechanism.
METHODS(1) Five adult C57BL/6 mice in estrus cycle were identified by vaginal exfoliative cytology diagnosis and set as estrus group, while another 5 adult C57BL/6 mice with ovary resected before sexual development were set as ovariectomized group. The full-thickness skin from the tail root of mice in two groups were collected. The thickness of epidermis was observed and measured after HE staining. The distribution of proliferating cell nuclear antigen (PCNA)-positive cells in epidermis was observed by immunohistochemical staining, the number of which was counted. (2) HaCaT cells in logarithmic growth phase were cultured with RPMI 1640 nutrient solution containing 10% fetal bovine serum, and they were divided into negative control group (NC), pure estradiol group (PE), protein kinase B (Akt) inhibitor group (AI), and extracellular signal-regulated kinase (ERK) inhibitor group (EI) according to the random number table, with 20 wells in each group. To nutrient solution of each group, 1 μL dimethyl sulfoxide, 1 μL 17β-estradiol (100 nmol/L), 1 μL LY294002 (10 μmol/L), and 1 μL PD98059 (30 μmol/L) were added in group NC, group PE, group AI, and group EI respectively, and the last two groups were added with 1 μL 17β-estradiol (100 nmol/L) in addition. At post culture hour (PCH) 0 (immediately after culture), 24, 48, 72, 5 wells of cells from each group were collected to detect the proliferation activity of cells by cell counting kit 8 and microplate reader. (3) HaCaT cells in logarithmic growth phase were collected, grouped, and treated with the above-mentioned methods, with 3 wells in each group. At PCH 72, cell cycle distribution was detected by flow cytometer to calculate proliferation index (PI) of cells. (4) HaCaT cells in logarithmic growth phase were collected, grouped, and treated with the above-mentioned methods, with 3 dishes in each group. At PCH 72, the protein levels of phosphorylated Akt (p-Akt), phosphorylated ERK (p-ERK), and PCNA were determined with Western blotting. The cell experiments were repeated for 3 times. Data were processed with t test, one-way analysis of variance, analysis of variance of factorial design, and LSD test.
RESULTS(1) The epidermis thickness of mice in ovariectomized group was (33.5±3.0) μm, which was obviously thinner than that in estrus group [(51.4±3.1) μm, t=20.7, P<0.01]. The PCNA-positive cells mainly aggregated in the basal layer of epidermis of mice in two groups. The number of PCNA-positive cells in epidermis of mice in ovariectomized group was 37±12 per 200 fold visual field, obviously fewer than that in estrus group (96±15 per 200 fold visual field, t=15.3, P<0.01). (2) During PCH 0 to 48, there were no significant differences in the proliferation activity of cells between group PE and group NC (with P values above 0.05). At PCH 72, compared with that in group NC, the proliferation activity of cells in group PE was obviously increased (P<0.01). The proliferation activity of cells in groups AI and EI was obviously lower than that in the previous two groups (with P values below 0.01). (3) Compared with that in group NC [(51.6±1.1)%], the PI of cells in group PE was obviously increased [(58.5±0.8)%, P<0.05]. The PI values of cells in groups AI and EI were (34.9±0.8)% and (48.2±0.4)% respectively, both obviously lower than those in the previous two groups (with P values below 0.01). (4) Compared with that of group NC (0.566±0.034), the protein level of p-Akt in cells of group PE was significantly increased (1.048±0.077, P<0.01). Compared with that of group PE, the protein level of p-Akt was obviously decreased in cells of groups AI and EI (respectively 0.682±0.095 and 0.672±0.019, with P values below 0.01). Compared with that of group NC (0.469±0.013), the protein level of p-ERK obviously increased in cells of groups PE, AI, and EI (respectively 1.064±0.089, 1.010±0.038, 0.778±0.065, with P values below 0.01). The protein level of p-ERK in cells of group EI was obviously lower than that in group PE (P<0.01). Compared with that of group NC (0.386±0.053), the protein level of PCNA was obviously increased in cells of group PE (0.743±0.043, P<0.01). The protein levels of PCNA in cells of groups AI and EI were 0.264±0.019 and 0.223±0.065 respectively, both obviously lower than those in the previous two groups (with P values below 0.01).
CONCLUSIONSLack of estrogen damages the growth ability of epidermis of mice. Estrogen (17β-estradiol) can promote the proliferation of HaCaT cells by increasing the expression of PCNA via activating ERK/Akt signaling pathway.
Animals ; Cell Cycle ; Cell Line ; Cell Proliferation ; drug effects ; Epidermis ; cytology ; drug effects ; growth & development ; Estradiol ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; antagonists & inhibitors ; Female ; Humans ; Keratinocytes ; cytology ; drug effects ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Proliferating Cell Nuclear Antigen ; metabolism ; Proto-Oncogene Proteins c-akt ; antagonists & inhibitors ; Signal Transduction
4.Effect of autologous platelet-rich plasma application on cutaneous wound healing in dogs.
Cho Hee JEE ; Na Young EOM ; Hyo Mi JANG ; Hae Won JUNG ; Eul Soo CHOI ; Jin Hee WON ; Il Hwa HONG ; Byeong Teck KANG ; Dong Wook JEONG ; Dong In JUNG
Journal of Veterinary Science 2016;17(1):79-87
		                        		
		                        			
		                        			This study was conducted to identify the effectiveness of platelet-rich plasma (PRP) and efficacy of intralesional injection as a method of application to acute cutaneous wounds in dogs. Healthy adult beagles (n = 3) were used in this study. Autologous PRP was separated from anticoagulant treated whole blood in three dogs. Cutaneous wounds were created and then treated by intralesional injection of PRP in the experimental group, while they were treated with saline in the control group on days 0, 2 and 4. The healing process was evaluated by gross examination throughout the experimental period and histologic examination on day 7, 14 and 21. In PRP treated wounds, the mean diameter was smaller and the wound closure rate was higher than in the control. Histological study revealed that PRP treated wounds showed more granulation formation and angiogenesis on day 7, and faster epithelialization, more granulation formation and collagen deposition were observed on day 14 than in control wounds. On day 21, collagen deposition and epithelialization were enhanced in PRP treated groups. Overall, PRP application showed beneficial effects in wound healing, and intralesional injection was useful for application of PRP and could be a good therapeutic option for wound management in dogs.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Collagen/metabolism
		                        			;
		                        		
		                        			Dermis/cytology/injuries/physiology
		                        			;
		                        		
		                        			Dogs
		                        			;
		                        		
		                        			Epidermis/cytology/injuries/*physiology
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Granulation Tissue/cytology
		                        			;
		                        		
		                        			Injections, Intralesional/veterinary
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Neovascularization, Physiologic
		                        			;
		                        		
		                        			*Platelet-Rich Plasma
		                        			;
		                        		
		                        			Regeneration
		                        			;
		                        		
		                        			Treatment Outcome
		                        			;
		                        		
		                        			*Wound Healing
		                        			;
		                        		
		                        			Wounds and Injuries/therapy/*veterinary
		                        			
		                        		
		                        	
5.Dietary effect of green tea extract on hydration improvement and metabolism of free amino acid generation in epidermis of UV-irradiated hairless mice.
Sumin CHOI ; Jihye SHIN ; Bomin LEE ; Yunhi CHO
Journal of Nutrition and Health 2016;49(5):269-276
		                        		
		                        			
		                        			PURPOSE: Ultraviolet (UV) irradiation decreases epidermal hydration, which is maintained by reduction of natural moisturizing factors (NMFs). Among various NMFs, free amino acids (AA) are major constituents generated by filaggrin degradation. This experiment was conducted to determine whether or not dietary supplementation of green tea extract (GTE) in UV-irradiated mice can improve epidermal levels of hydration, filaggrin, free AAs, and peptidylarginine deiminase-3 (PAD3) expression (an enzyme involved in filaggrin degradation). METHODS: Hairless mice were fed a diet of 1% GTE for 10 weeks in parallel with UV irradiation (group UV+1%GTE). As controls, hairless mice were fed a control diet in parallel with (group UV+) or without (group UV-) UV irradiation. RESULTS: In group UV+, epidermal levels of hydration and filaggrin were lower than those in group UV-; these levels increased in group UV+1% GTE to levels similar to group UV-. Epidermal levels of PAD3 and major AAs of NMF, alanine, glycine and serine were similar in groups UV- and UV+, whereas these levels highly increased in group UV+1% GTE. CONCLUSION: Dietary GTE improves epidermal hydration by filaggrin generation and degradation into AAs.
		                        		
		                        		
		                        		
		                        			Alanine
		                        			;
		                        		
		                        			Amino Acids
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Diet
		                        			;
		                        		
		                        			Dietary Supplements
		                        			;
		                        		
		                        			Epidermis*
		                        			;
		                        		
		                        			Glycine
		                        			;
		                        		
		                        			Metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Hairless*
		                        			;
		                        		
		                        			Serine
		                        			;
		                        		
		                        			Tea*
		                        			
		                        		
		                        	
6.Role of dentritic epidermal T lymphocytes in immune rejection of skin allograft in mice and its mechanism.
Hua HUANG ; Rongshuai YAN ; Meisi LIU ; Junyi ZHOU ; Jianglin TAN ; Xiaorong ZHANG ; Xiao-hong HU ; Yong HUANG ; Weifeng HE ; Jun WU ; Gaoxing LUO
Chinese Journal of Burns 2015;31(2):125-129
		                        		
		                        			
		                        			To explore the role of dentritic epidermal T lymphocytes ( DETCs) in immune rejection of skin allograft in mice and its related mechanism. Methods (1) Full-thickness skin was harvested from back of one male wild type (WT) C57BL/6 mouse. Epithelial cells were isolated for detection of the expression of DETCs and their phenotype with flow cytometer. Another male WT C57BL/6 mouse was used to harvest full-thickness skin from the back. Epidermis was isolated for observation of the morphological characteristics of DETCs with immunofluorescence technology. (2) Four male green fluorescence protein (GFP)-marked C57BL/6 mice, 7 female WT C57BL/6 mice (group WT), and 7 female ybT lymphocytes 8 gene knock-out (GK) C57BL/6 mice (group GK) were used. Full-thickness skin in the size of 1.4 cm x 1.4 cm on the back of mice in groups WT and GK were excised, and the wounds were transplanted with full-thickness skin in the size of 1.2 cm x 1.2 cm obtained from male GFP-marked C57BL/6 mice. The survival time of skin grafts was affirmed with small animal in vivo imager and naked eyes and recorded. (3) Two male WT C57BL/6 mice were used to isolate epithelial cells. Cells were inoculated into 48-well plate and divided into activation group (A) and control group (C) according to the random number table, with 4 wells in each group. Cells in group A were treated with 10 pL concanavalin A in the concentration of 2 microg/mL for 24 hours, while those in group C with PBS in the same volume as that in group A. The expression of interferon y in DETCs was detected with flow cytometer. (4) Four male GFP-marked C57BL/6 mice were used as donors. Fourteen female WT C57BL/6 mice were used as receptors and divided into interferon gamma neutralizing group (IN) and control group (C) according to the random number table, with 7 mice in each group. The skin transplantation model of C57BL/6 male to C57BL/6 female was established as in part (2). Before surgery and 72 hours after, mice in group IN were intraperitoneally injected with 200 pL interferon y neutralizing antibody in the concentration of 1 mg/mL, and those in group C with normal saline in the same volume as that in group IN. The survival time of skin grafts was observed and recorded using the methods in part (2), and the result of group IN was compared with that of group GK in part (2). The survival curve of skin grafts was processed with Log-rank ( Mantel-Cox) test. Results (1) The positive expression rate of DETCs in epithelial cells of skin in mouse was 7.27%, and they were all CD3 cells. DETCs were found to be scattered in the epidermis of skin in mouse with dendritic morphology. (2) The survival time of skin grafts of mice in group GK was 22-35 d, obviously longer than that in group WT (12-16 d, y2 = 14. 10 , P < 0.001). (3) Expression of interferon gamma was detected in 22. 70% DETCs in group A, which was obviously higher than that in group C (0.51%). (4) The survival time of skin grafts of mice in group IN was 19-24 d, which was obviously longer than that in group C (12-16 d, chi 2 = 13.60, P < 0.001) but close to that in group GK as in part (2) (chi2 = 0.06, P = 0.810). Conclusions DETCs are involved in promotion of immune rejection of skin allograft probably by secretinf interferon gamma.
		                        		
		                        		
		                        		
		                        			Allografts
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Epidermis
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Graft Survival
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Interferon-gamma
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lymphocytes
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Skin
		                        			;
		                        		
		                        			Skin Transplantation
		                        			;
		                        		
		                        			T-Lymphocytes
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
7.Comparative effect of dietary borage oil and safflower oil on anti-proliferation and ceramide metabolism in the epidermis of essential fatty acid deficient guinea pigs.
Journal of Nutrition and Health 2015;48(4):319-326
		                        		
		                        			
		                        			PURPOSE: Borage oil (BO) and safflower oil (SO) are efficacious in reversing epidermal hyperproliferation, which is caused by the disruption of epidermal barrier. In this study, we compared the antiproliferative effect of dietary BO and SO. Altered metabolism of ceramide (Cer), the major lipid of epidermal barrier, was further determined by measurement of epidermal levels of individual Cer, glucosylceramide (GlcCer), and sphingomyelin (SM) species, and protein expression of Cer metabolizing enzymes. METHODS: Epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut diet (HCO) for 8 weeks. Subsequently, animals were fed diets of either BO (group HCO + BO) or SO (group HCO + SO) for 2 weeks. As controls, animals were fed BO (group BO) or HCO (group HCO) diets for 10 weeks. RESULTS: Epidermal hyperproliferation was reversed in groups HCO + BO (67.6% of group HCO) and HCO + SO (84.5% of group HCO). Epidermal levels of Cer1/2, GlcCer-A/B, and beta-glucocerebrosidase (GCase), an enzyme of GlcCer hydrolysis for Cer generation, were higher in group HCO + BO than in group HCO, and increased to levels similar to those of group BO. In addition, epidermal levels of SM1, serine palmitoyltransferase (SPT), and acidic sphingomyelinase (aSMase), enzymes of de novo Cer synthesis and SM hydrolysis for Cer generation, but not of Cer3-7, were higher in group HCO + BO than in group HCO. Despite an increase of SPT and aSMase in group HCO + SO to levels higher than in group HCO, epidermal levels of Cer1-7, GlcCer-A/B, and GCase were similar in these two groups. Notably, acidic ceramidase, an enzyme of Cer degradation, was highly expressed in group HCO + SO. Epidermal levels of GlcCer-C/D and SM-2/3 did not differ among groups. CONCLUSION: Dietary BO was more prominent for reversing epidermal hyperproliferation by enhancing Cer metabolism with increased levels of Cer1/2, GlcCer-A/B, and SM1 species, and of GCase proteins.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Borago*
		                        			;
		                        		
		                        			Carthamus tinctorius*
		                        			;
		                        		
		                        			Ceramidases
		                        			;
		                        		
		                        			Cocos
		                        			;
		                        		
		                        			Diet
		                        			;
		                        		
		                        			Epidermis*
		                        			;
		                        		
		                        			Glucosylceramidase
		                        			;
		                        		
		                        			Guinea Pigs*
		                        			;
		                        		
		                        			Guinea*
		                        			;
		                        		
		                        			Hydrogen
		                        			;
		                        		
		                        			Hydrolysis
		                        			;
		                        		
		                        			Metabolism*
		                        			;
		                        		
		                        			Safflower Oil*
		                        			;
		                        		
		                        			Serine C-Palmitoyltransferase
		                        			;
		                        		
		                        			Sphingomyelin Phosphodiesterase
		                        			
		                        		
		                        	
8.Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin.
Chunji QUAN ; Moon Kyun CHO ; Yuan SHAO ; Laurel E MIANECKI ; Eric LIAO ; Daniel PERRY ; Taihao QUAN
Protein & Cell 2015;6(12):890-903
		                        		
		                        			
		                        			Stromal cells provide a crucial microenvironment for overlying epithelium. Here we investigated the expression and function of a stromal cell-specific protein, stromal cell-derived factor-1 (SDF-1), in normal human skin and in the tissues of diseased skin. Immunohistology and laser capture microdissection (LCM)-coupled quantitative real-time RT-PCR revealed that SDF-1 is constitutively and predominantly expressed in dermal stromal cells in normal human skin in vivo. To our surprise, an extremely high level of SDF-1 transcription was observed in the dermis of normal human skin in vivo, evidenced by much higher mRNA expression level than type I collagen, the most abundant and highly expressed protein in human skin. SDF-1 was also upregulated in the tissues of many human skin disorders including psoriasis, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Double immunostaining for SDF-1 and HSP47 (heat shock protein 47), a marker of fibroblasts, revealed that fibroblasts were the major source of stroma-cell-derived SDF-1 in both normal and diseased skin. Functionally, SDF-1 activates the ERK (extracellular-signal-regulated kinases) pathway and functions as a mitogen to stimulate epidermal keratinocyte proliferation. Both overexpression of SDF-1 in dermal fibroblasts and treatment with rhSDF-1 to the skin equivalent cultures significantly increased the number of keratinocyte layers and epidermal thickness. Conversely, the stimulative function of SDF-1 on keratinocyte proliferation was nearly completely eliminated by interfering with CXCR4, a specific receptor of SDF-1, or by knock-down of SDF-1 in fibroblasts. Our data reveal that extremely high levels of SDF-1 provide a crucial microenvironment for epidermal keratinocyte proliferation in both physiologic and pathologic skin conditions.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Chemokine CXCL12
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Epidermal Cells
		                        			;
		                        		
		                        			Epidermis
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Extracellular Signal-Regulated MAP Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Keratinocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Skin Diseases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
9.Expression of microRNA-203 and P63 in human epidermal stem cells and keratinocytes.
Zhi-fang SONG ; Dewu LIU ; Yan PENG ; Jin LI ; Zhiwei ZHANG ; Pu NING ; Yanghong HU
Chinese Journal of Burns 2014;30(4):344-348
OBJECTIVETo observe the changes in expression of microRNA-203 and P63 in human epidermal stem cells and KCs, and to investigate their effects and significance in the epidermal proliferation and differentiation.
METHODS(1) Five normal foreskin tissue specimens were collected from 5 patients by circumcision in Department of Urinary Surgery of the First Affiliated Hospital of Nanchang University from March to June in 2013. Then single cell suspension was obtained by separating epidermis with trypsin digestion method. The cells were divided into quick adherent cells and non-quick adherent cells by type IV collagen differential adherent method. The biological characteristics of cells were observed by inverted phase contrast microscope immediately after isolation and on post culture day (PCD) 3. The expression of CD29, keratin 19, keratin 1, and keratin 10 was identified by immunocytochemical staining. The expression of microRNA-203 and mRNA of P63 was determined by real-time fluorescent quantitative RT-PCR. The protein expression of P63 was determined by Western blotting. Data were processed with t test and Pearson correlation analysis.
RESULTS(1) Immediately after isolation, quick adherent cells were small, round, and dispersed uniformly. On PCD 3, the cells adhered firmly, and they grew in clones. Immediately after isolation, non-quick adherent cells appeared in different shapes and sizes, and dispersed unevenly. On PCD 3, the cells adhered precariously and did not show clonal growth. Quick adherent cells showed positive expression of CD29 and keratin 19, while non-quick adherent cells showed positive expression of keratin 1 and keratin 10. Quick adherent cells were identified as epidermal stem cells, and non-quick adherent cells were identified as KCs. (2)The expression level of microRNA-203 in epidermal stem cells (0.74 ± 0.20) was lower than that in KCs (3.66 ± 0.34, t =16.582, P <0.001). The mRNA expression level of P63 in epidermal stem cells (4. 16 ± 0.28) was higher than that in KCs (2.90 ± 0.39, t =5. 850, P =0.001). The protein expression level of P63 in epidermal stem cells (1.42 ± 0.05) was higher than that in KCs (0.73 ± 0.03, t =26.460, P <0. 001). (3) The expression level of microRNA-203 was in significantly negative correlation with the expression levels of mRNA and protein of P63 (with r values respectively - 0. 94 and -0.98 , P values below 0.05).
CONCLUSIONSThe expression levels of microRNA-203 and P63 in human epidermal stem cells and KCs were significantly different, which might be related to the different characteristics of proliferation and differentiation of the cells.
Cell Differentiation ; Cells, Cultured ; Epidermis ; cytology ; growth & development ; Epithelial Cells ; cytology ; metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Humans ; Integrin beta1 ; Keratin-10 ; genetics ; metabolism ; Keratin-19 ; genetics ; metabolism ; Keratinocytes ; Male ; Membrane Proteins ; genetics ; metabolism ; MicroRNAs ; genetics ; metabolism ; Stem Cells ; cytology ; metabolism
10.Neuroprotective effects of Vitis vinifera extract on prediabetic mice induced by a high-fat diet.
Heung Yong JIN ; Youn Soo CHA ; Hong Sun BAEK ; Tae Sun PARK
The Korean Journal of Internal Medicine 2013;28(5):579-586
		                        		
		                        			
		                        			BACKGROUND/AIMS: Vitis vinifera grape seed extract (VVE) contains oligomeric proanthocyanidins that show antioxidant and free radical-scavenging activities. We evaluated VVE for its neuroprotective effect in prediabetic mice induce by a high-fat diet (HD). METHODS: Mice were divided into four groups according to VVE dose: those fed a normal diet (ND; n = 10), HD (n = 10), HD with 100 mg/kg VVE (n = 10), and HD with 250 mg/kg VVE (n = 10). After 12 weeks, immunohistochemical analyses were carried out using a polyclonal antibody against antiprotein gene product 9.5 (protein-gene-product, 9.5), and intraepidermal innervation was subsequently quantified as nerve fiber abundance per unit length of epidermis (intraepidermal nerve fiber, IENF/mm). RESULTS: Daily administration of VVE at doses of 100 or 250 mg/kg for 12 weeks protected HD mice from nerve fiber loss compared to untreated mice, as follows (IENF/mm): controls (40.95 +/- 5.40), HD (28.70 +/- 6.37), HD with 100 mg/kg (41.14 +/- 1.12), and HD with 250 mg/kg (48.98 +/- 7.01; p < 0.05, HD with VVE vs. HD). CONCLUSIONS: This study provides scientific support for the therapeutic potential of VVE in peripheral neuropathy in an HD mouse model. Our results suggest that VVE could play a role in the management of peripheral neuropathy, similar to other antioxidants known to be beneficial for diabetic peripheral neuropathy.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antioxidants/*pharmacology
		                        			;
		                        		
		                        			Biological Markers/blood
		                        			;
		                        		
		                        			Blood Glucose/drug effects/metabolism
		                        			;
		                        		
		                        			Body Weight/drug effects
		                        			;
		                        		
		                        			Diabetic Neuropathies/blood/etiology/pathology/*prevention & control
		                        			;
		                        		
		                        			*Diet, High-Fat
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Epidermis/*innervation
		                        			;
		                        		
		                        			Grape Seed Extract/*pharmacology
		                        			;
		                        		
		                        			Lipids/blood
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Neuroprotective Agents/*pharmacology
		                        			;
		                        		
		                        			Peripheral Nerves/*drug effects/pathology
		                        			;
		                        		
		                        			Phytotherapy
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			Prediabetic State/blood/*drug therapy/etiology
		                        			;
		                        		
		                        			Time Factors
		                        			;
		                        		
		                        			*Vitis
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail