1.Study on effect of extract from Tibetan medicine Urtica hyperborean on anti-prostatic hyperplasia.
Ri-Na SU ; Rong-Rui WEI ; Wei-Zao LUO ; Ji-Xiao ZHU ; Lu WANG ; Guo-Yue ZHONG
China Journal of Chinese Materia Medica 2019;44(9):1953-1959
In this study,mouse models of benign prostatic hyperplasia induced by subcutaneous injection of testosterone propionate was used to investigate the therapeutic effect and mechanism of Urtica hyperborean( UW) extracts on prostate hyperplasia in mice. The effects of UW extracts on prostate index,serum epidermal growth factor( EGF) and dihydrotestosterone( DHT) in model mice were observed,and the EGF and anti-apoptotic factor( Bcl-2) mRNA expression levels were detected as well as pathological changes in prostate tissue. The results showed that the ethyl acetate extraction and alcohol soluble fraction of the UW could significantly reduce the prostate index,reduce the serum DHT and EGF levels( P<0. 01),and significantly decrease the EGF and Bcl-2 mRNA expression( P<0. 01),significantly improved the morphological structure of prostate tissue. The above results confirmed that ethyl acetate extract and alcohol-soluble parts of UW have a good preventive effect on mice prostatic hyperplasia model,and its mechanism may be to reduce androgen levels by regulating polypeptide growth factors and/or inhibiting cell hyperproliferation and promoting apoptosis. This study laid the foundation for the further research on UW.
Animals
;
Dihydrotestosterone
;
blood
;
Epidermal Growth Factor
;
blood
;
Male
;
Medicine, Tibetan Traditional
;
Mice
;
Plant Extracts
;
pharmacology
;
Prostatic Hyperplasia
;
chemically induced
;
drug therapy
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Testosterone Propionate
;
Urticaceae
;
chemistry
2.1-Methoxycarbony-β-carboline from Picrasma quassioides exerts anti-angiogenic properties in HUVECs in vitro and zebrafish embryos in vivo.
Qing-Hua LIN ; Wei QU ; Jian XU ; Feng FENG ; Ming-Fang HE
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):599-609
Angiogenesis is a crucial process in the development of inflammatory diseases, including cancer, psoriasis and rheumatoid arthritis. Recently, several alkaloids from Picrasma quassioides had been screened for angiogenic activity in the zebrafish model, and the results indicated that 1-methoxycarbony-β-carboline (MCC) could effectively inhibit blood vessel formation. In this study, we further confirmed that MCC can inhibit, in a concentration-dependent manner, the viability, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, as well as the regenerative vascular outgrowth of zebrafish caudal fin in vivo. In the zebrafish xenograft assay, MCC inhibited the growth of tumor masses and the metastatic transplanted DU145 tumor cells. The proteome profile array of the MCC-treated HUVECs showed that MCC could down-regulate several angiogenesis-related self-secreted proteins, including ANG, EGF, bFGF, GRO, IGF-1, PLG and MMP-1. In addition, the expression of two key membrane receptor proteins in angiogenesis, TIE-2 and uPAR, were also down-regulated after MCC treatment. Taken together, these results shed light on the potential therapeutic application of MCC as a potent natural angiogenesis inhibitor via multiple molecular targets.
Angiogenesis Inhibitors
;
chemistry
;
pharmacology
;
Animals
;
Carbolines
;
chemistry
;
pharmacology
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Epidermal Growth Factor
;
genetics
;
metabolism
;
Fibroblast Growth Factors
;
genetics
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Neovascularization, Physiologic
;
drug effects
;
Picrasma
;
chemistry
;
Plant Extracts
;
chemistry
;
pharmacology
;
Receptor, TIE-2
;
genetics
;
metabolism
;
Zebrafish
;
embryology
3.Effects of Platelet Lysate Preparations on the Proliferation of HaCaT Cells.
Sae Yun BAIK ; Young Ae LIM ; Seon Joo KANG ; Sun Hyun AHN ; Wee Gyo LEE ; Chul Ho KIM
Annals of Laboratory Medicine 2014;34(1):43-50
BACKGROUND: Standard protocols are lacking for the preparation of platelet lysates (PL) as an alternative to using fetal bovine serum as a cell culture supplement. This study aimed to establish optimum conditions for preparing PL for use in cell cultures. METHODS: Cell density in three pooled platelet concentrates (PC) were adjusted to 1x10(12)/L and 2x10(12)/L. PL was prepared from PC by 1 to 3 freeze-thaw (FT) cycles. HaCaT cells were cultured in media supplemented with 5% or 10% PL. Cell numbers were estimated using a Cell Counting Kit-8 (CCK-8; Dojindo Laboratories, Japan). Growth factors were quantified by using the Luminex 200 system (Luminex Corporation, USA). RESULTS: Cell proliferation rates in the presence of PLs were similar when prepared from PCs of both cell densities. The rates were higher in media containing 5% PL than 10% PL when prepared by two FT cycles. Concentrations of vascular endothelial growth factor (VEGF), platelet-derived growth factor-AB/BB (PDGF-AB/BB), PDGF-AA, and epidermal growth factor (EGF) were significantly higher in PL prepared from PC with a cell density of 2x10(12)/L than 1x10(12)/L PC. However, only VEGF and PDGF-AA concentrations in PLs were correlated with HaCaT cell counts. CONCLUSIONS: The 5% PL from PC with a cell density of 1x10(12)/L prepared by two FT cycles treatment was the most effective condition that supported steady HaCaT cell proliferation. Our finding may be useful for preparing PL-supplemented cell culture media.
Blood Platelets/chemistry/*metabolism
;
Cell Line
;
Cell Proliferation/drug effects
;
Culture Media/pharmacology
;
Epidermal Growth Factor/chemistry/pharmacology
;
Humans
;
Platelet-Derived Growth Factor/chemistry/pharmacology
;
Vascular Endothelial Growth Factor A/chemistry/pharmacology
4.Study on the differentiation of human mesenchymal stem cells into vascular endothelial-like cells.
Rong XU ; Jinyong XU ; Wei LIU
Journal of Biomedical Engineering 2014;31(2):389-393
To explore the feasibility of mesenchymal stem cells (MSCs) acting as seed cells in tissue engineering, we isolated human bone marrow MSCs and differentiated them into vascular endothelial-like cells (ELCs) in vitro. Bone marrow mononuclear cells (BMSCs) were isolated by the method of percoll density centrifugation, and seeded in Dulbecco Modified Eagle Medium supplemented with 10% fetal bovine serum. MSCs were purified through multiple adherent cultures, and differentiated into ELCs induced by endothelial cell growth medium-2 (EBM-2) medium containing vascular endothelial growth factor (VEGF), human fibroblast growth factor (hFGF), insulin like growth factors 1 (IGF-1), and human epidermal growth factor (hEGF). The relative biologic characteristics of ELCs including cell morphology and phenotype were studied by inverted microscope and flow cytometry. The induced cells were identified by immunofluorescence with CD31 and Von Willebrand factor (vWF). The results showed that the morphology of MSCs was long-spindle and vortex-like growth. After induction of differentiation, the cells were round, and similar to vascular endothelial cells (ECs). Flow cytometric analysis revealed that ELCs expressed ECs specific surface markers of CD31 and vascular endothelial cadherin (VE-cadherin), but not CD133. Immunofluorescence results also confirmed that ELCs expressed CD31 and vWF. The results suggested that ELCs possed similar cell biological characteristics with ECs. In one word, human MSCs derived from bone marrow have the potential to differentiate into ECs in vitro, and show clinical feasibility acting as ideal donor cells of vascular tissue engineering.
Antigens, CD
;
metabolism
;
Bone Marrow Cells
;
Cadherins
;
metabolism
;
Cell Culture Techniques
;
Cell Differentiation
;
Cells, Cultured
;
Culture Media
;
chemistry
;
Endothelial Cells
;
cytology
;
Epidermal Growth Factor
;
pharmacology
;
Fibroblast Growth Factors
;
pharmacology
;
Flow Cytometry
;
Humans
;
Insulin-Like Growth Factor I
;
pharmacology
;
Mesenchymal Stromal Cells
;
cytology
;
Platelet Endothelial Cell Adhesion Molecule-1
;
metabolism
;
Tissue Engineering
;
Vascular Endothelial Growth Factor A
;
pharmacology
;
von Willebrand Factor
;
metabolism
5.Anticancer effect of 17-(6-cinnamamido-hexylamino-)-17-demethoxygeldanamycin: in vitro and in vivo.
Liang LI ; Hong LIU ; Sheng-Hua ZHANG ; Lei HU ; Yong-Su ZHEN
Acta Pharmaceutica Sinica 2013;48(12):1771-1777
In the present study, a new compound named 17-(6-cinnamamido-hexylamino-)-17-demethoxygeldanamycin (CDG) was obtained by introducing the cinnamic acid (CA) group into the 17-site of geldanamycin (GDM). The anti-cancer effects of CDG in vitro and in vivo were evaluated. MTT assay was used to examine the inhibitory effect of CDG on the proliferation of MCF-7, HepG2, H460 and SW1990 cells. Immunofluorescent staining flow cytometry combined with Annexin V-FITC/PI staining were used to detect apoptotic cells. Transwell assay was used to analyze the effect of CDG on cell invasion and migration ability. Western blotting was used to detect the expression levels of RAF-1, EGFR, AKT, CDK4 and HER-2 of MCF-7, HepG2 and H460 cells. The toxicities of CDG and GDM were evaluated in mice. Using the subcutaneously transplanted MCF-7 xenograft in nude mice, inhibitory effect was evaluated in vivo. The results showed that CDG inhibited the proliferation of cancer cells (IC50: 13.6-67.4 microg.mL-1). After exposure to CDG for 48 h, most cells presented typical morphologic changes of apoptosis such as chromatin condensation or shrunken nucleus. The rates of apoptosis of MCF-7, HepG2, H460 and SW1990 cells incubated with 10 microg.mL-1 CDG were 23.16%, 27.55%, 22.21%, 20.47%, respectively. A dose-dependent reduction of migration of four cell lines was found after exposure to CDG. The decreased levels of RAF-1, EGFR, AKT, CDK4 and HER-2 showed that CDG possessed HSP90 inhibitory effect. The result of animal toxicity test on the mice suggested that CDG had lower toxicity than GDM. Meanwhile, CDG inhibited the growth of MCF-7 xenografts of athymic mice.
Animals
;
Antineoplastic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Apoptosis
;
drug effects
;
Benzoquinones
;
chemical synthesis
;
chemistry
;
pharmacology
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cyclin-Dependent Kinase 4
;
metabolism
;
Female
;
HSP90 Heat-Shock Proteins
;
antagonists & inhibitors
;
Humans
;
Lactams, Macrocyclic
;
chemical synthesis
;
chemistry
;
pharmacology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Mice, Nude
;
Neoplasm Invasiveness
;
Neoplasm Transplantation
;
Proto-Oncogene Proteins A-raf
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Random Allocation
;
Receptor, Epidermal Growth Factor
;
metabolism
;
Receptor, ErbB-2
;
metabolism
;
Tumor Burden
;
drug effects
;
Xenograft Model Antitumor Assays
6.Antiulcer effects and mechanism study of Veronicastrum axillare on ethanol induced gastric ulcer rats.
Gui-fang SHEN ; Wei GUO ; Wei-chun ZHAO
Chinese Journal of Integrated Traditional and Western Medicine 2012;32(10):1370-1373
OBJECTIVETo study the antiulcer effects and the mechanism of Veronicastrum axillare (Sieb. et Zucc) Yamazaki (VAY) on ethanol induced gastric ulcer rats.
METHODSTotally 48 healthy SD rats were randomly divided into 6 groups, i.e., the normal group, the model group, the ranitidine group, the high dose VAY group, the medium dose VAY group, and the low dose VAY group, 8 in each group. Rats in the normal group and the model group were administered with normal saline respectively. Rats in the ranitidine group were administered with 0.18% ranitidine suspension (at the daily dose of 0.027 g/kg) by gastrogavage. Those in the high dose VAY group, the medium dose VAY group, and the low dose VAY group were administered with VAY at the daily dose of 2.8 g/kg, 1.4 g/kg, and 0.7 g/kg by gastrogavage, once daily for 14 consecutive days. The gastric ulcer model was established using absolute ethanol after the last gastrogavage. The ulcer index and the ulcer inhibitory rate were compared. The concentrations of malonyldialdehyde (MDA), nitric oxide (NO), epidermal growth factor (EGF), and the activity of superoxide dismutase (SOD) in the serum and the homogenate of the gastric mucosa tissue were detected.
RESULTSCompared with the model group, the gastric ulcer index in the rest groups obviously decreased (P < 0.01). The ulcer index was dose-dependent with VAY (P < 0.01), with the highest gastric ulcer index shown in the high dose VAY group (P < 0.01). Compared with the normal group, the concentrations of MDA and NO significantly increased in the serum and the gastric mucosa tissue, the activity of SOD and the EGF content in the gastric mucosa tissue of rats in the model group significantly decreased (P < 0.01). Compared with the model group, the MDA concentrations in the serum and the gastric mucosa tissue decreased, the serum NO content increased, the NO content in the gastric mucosa tissue decreased, the serum SOD activity increased, the EGF content in the gastric mucosa tissue increased in the rest groups, all showing statistical difference (P < 0.05, P < 0.01).
CONCLUSIONSThe water extract of VAY had significant effects on ethanol induced gastric ulcer. Its mechanisms might lie in reducing the generation of free radicals, promoting the oxygen free radical clearance, restraining lipid peroxidation, regulating and controlling the in vivo contents of NO and EGF.
Animals ; Anti-Ulcer Agents ; pharmacology ; therapeutic use ; Epidermal Growth Factor ; metabolism ; Ethanol ; adverse effects ; Male ; Malondialdehyde ; metabolism ; Plant Extracts ; pharmacology ; therapeutic use ; Plantago ; chemistry ; Rats ; Rats, Sprague-Dawley ; Stomach Ulcer ; drug therapy ; etiology ; metabolism ; Superoxide Dismutase ; metabolism
7.Effect of Pongamia pinnata root flavonoids on the quality of ulcer healing and expression of EGF and TGF-alpha in the rat model of gastric ulcer induced by acetic acid.
Ke-Yun LIU ; Yi ZHU ; Xian-Zhen HUANG
Chinese Journal of Applied Physiology 2012;28(5):435-438
OBJECTIVETo observe the effects and mechanisms of Pongamia pinnata root flavonoids (PRF) on the experimental gastric ulcer induced by acetic acid and to study the mechanism of PRF on the quality of ulcer healing.
METHODSThe models were established by acetic acid erosion, the quality of ulcer healing of PRF on the model of gastric ulcer were observed. The contents of epidermal growth factor (EGF) in serum were determined by radioimmunoassay. The expression of EGF and transforming growth factor-alpha (TGF-alpha) were detected by immunohistochemistry (SP).
RESULTSPRF significantly inhibited ulcerative formation induced by acetic acid (P < 0.05, P < 0.01). PRF could significantly increase the EGF and TGF-alpha (P < 0.05, P < 0.01) expression of para-ulcer mucosa tissue and improve the EGF contents in blood serum (P < 0.05, P < 0.01).
CONCLUSIONPRF increases the contents of EGF in serum and the expression of EGF and TGF-alpha in the tissue around gastric ulcer which might be one of possible mechanisms that PRF improves quality of ulcer healing.
Acetic Acid ; Animals ; Epidermal Growth Factor ; blood ; Female ; Flavonoids ; pharmacology ; Gastric Mucosa ; metabolism ; Male ; Millettia ; chemistry ; Plant Roots ; chemistry ; Rats ; Rats, Sprague-Dawley ; Stomach Ulcer ; chemically induced ; drug therapy ; metabolism ; Transforming Growth Factor alpha ; metabolism
8.4, 8-disubstituted-8, 9-dihydro-pyrazine2,3-gquinazoline-7(6H)-ketones: a novel class of antitumor agents.
Zi-qi YE ; Wen-bo DING ; Zhe CHEN ; Yan-dong ZHANG ; Yong-ping YU ; Yi-jia LOU
Journal of Zhejiang University. Medical sciences 2010;39(1):49-56
OBJECTIVETo evaluate the antitumor activity of a novel class of 4, 8-Disubstituted-8, 9-dihydropyrazine[2, 3-g]quinazoline-7(6H)-ketones in vitro, and to screen potential anticancer compounds for further study.
METHODSSeventeen compounds of 4, 8-Disubstituted-8, 9-dihydropyrazine[2, 3-g]quinazoline-7(6H)-ketones were synthesized with solid-phase method for biological evaluation of EGFR tyrosine kinase. MTT method was used to evaluate the cytotoxic activity in vitro against three human cancer cell lines (human lung carcinoma cell line A549, human leukemia cell lines K562 and human gastric carcinoma cell line SGC7901).
RESULTSCompound 7-13 and 7-14 showed potent antitumor activities against A549 cells, with IC(50) values of 8.10 and 8.12 mol/L, respectively. Eight compounds showed proliferative inhibition effect on K562 cells, especially 7-2, 7-13 and 7-17, with IC(50) values of 2.22,0.57 and 7.20 mol/L,respectively.And compound 7-13 and 7-3 showed potent antitumor activity against SGC7901 cells, with IC(50) values of 4.20 and 9.71 mol/L, respectively.
CONCLUSIONThe synthesized compounds 4, 8-Disubstituted-8, 9-dihydropyrazine[2, 3-g] quinazoline-7(6H)-ketones show inhibition effects on human cancer cell lines in vitro. Compound 7-13 has anticancer activity in all three cancer cell lines, which might be used as a potential antitumor drug for further study.
Antineoplastic Agents ; chemical synthesis ; chemistry ; pharmacology ; Cell Line, Tumor ; Drug Screening Assays, Antitumor ; Humans ; K562 Cells ; Lung Neoplasms ; pathology ; Molecular Structure ; Pyrazines ; chemical synthesis ; chemistry ; pharmacology ; Quinazolines ; chemical synthesis ; chemistry ; pharmacology ; Receptor, Epidermal Growth Factor ; antagonists & inhibitors ; Stomach Neoplasms ; pathology ; Structure-Activity Relationship
9.Rapid differentiation of human umbilical cord-derived mesenchymal stem cells into insulin-secreting cells under the sole induction of biological products.
Yue-Chun WANG ; Yuan ZHANG ; A-Lin DUAN ; Wei-Xia LIN ; Qiao-Dan ZHENG ; Wen-Lu XU
Acta Physiologica Sinica 2010;62(1):73-78
In order to explore the feasibility of inducing the human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) to differentiate into insulin-secreting cells with biological products alone, hUC-MSCs were separated and purified from the whole umbilical cord by the sequent digestion of collagenase II and trypsin followed by two-step centrifugation. hUC-MSCs were induced with IMDM culture medium containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and Ginkgo biloba extract (GBE). Before and after the induction, the morphological changes were observed under inverse microscope; the islet-related genes were detected by RT-PCR; islet-like clusters (ILCs) were identified by dithizone (DTZ) staining; PDX-1 and immunoreactive insulin (IRI) were examined by immunofluorescence method; the quantity and quality of IRI secretion were assayed by chemiluminescence immunoassay and Western blot respectively. The results showed that the purified hUC-MSCs presented long spindle-like shape and parallel or spiral arrangement which are typical morphological features of MSCs. After the induction, hUC-MSCs changed gradually into round or oval shape and gathered together to form ILCs; there were more than one hundred clusters on the growth surface of a flask of T25; ILCs were stained into positive mauve by DTZ and positive for PDX-1 and IRI; Western blot displayed that most of the IRI was proinsulin (PI). Therefore, hUC-MSCs can rapidly differentiate into insulin-secreting cells under the sole induction of EGF, bFGF, GBE and IMDM, but ILCs are not mature enough to produce sufficient true insulin.
Cell Differentiation
;
Cells, Cultured
;
Epidermal Growth Factor
;
pharmacology
;
Fibroblast Growth Factor 2
;
pharmacology
;
Ginkgo biloba
;
chemistry
;
Humans
;
Insulin-Secreting Cells
;
cytology
;
Mesenchymal Stromal Cells
;
cytology
;
Plant Extracts
;
pharmacology
;
Umbilical Cord
;
cytology
10.An updated review at molecular pharmacological level for the mechanism of anti-tumor, antioxidant and immunoregulatory action of silibinin.
Hong-jun WANG ; Yuan-yuan JIANG ; Ping LU ; Qiong WANG ; Takashi IKEJIMA
Acta Pharmaceutica Sinica 2010;45(4):413-421
Silibinin, from milk thistle (Silybum marianum), is a flavonolignan with anti-oxidative and anti-inflammatory properties. It has been therapeutically used for the treatment of hepatic diseases in China, Germany and Japan. Recently, increasing evidences prove that silibinin is also a potent antitumor agent, and the major anti-tumor mechanism for silibinin is the prominent inhibition of the activities of receptor tyrosine kinases (RTKs) and their downstream signal molecules in a variety of tumor cell lines, such as epidermal growth factor receptor 1 (EGFR) and insulin-like growth factor 1 receptor (IGF-1R) signaling pathways. Meanwhile, the evidences that silibinin selectively scavenges hydroxyl free radical (*OH) and specifically inhibits the action of nuclear factor kappaB (NF-kappaB) provide more complicated explanations for its antioxidant and anti-inflammatory effects. Some new findings such as that silibinin attenuating the cognitive deficits induced by amyloid beta protein (Abeta) peptide through its antioxidative and anti-inflammatory properties is valuable to broad the medical prospect of silibinin. In this review, we discuss the molecular pharmacological mechanisms of silibinin, focusing on its inhibition of tyrosine kinases, actions of antioxidation, free radical scavenging, immunoregulation and anti-inflammation.
Amyloid beta-Peptides
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Antioxidants
;
pharmacology
;
Enzyme Activation
;
Free Radical Scavengers
;
pharmacology
;
Humans
;
Milk Thistle
;
chemistry
;
Molecular Structure
;
NF-kappa B
;
metabolism
;
Protein-Tyrosine Kinases
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Receptor Protein-Tyrosine Kinases
;
metabolism
;
Receptor, Epidermal Growth Factor
;
metabolism
;
Receptor, IGF Type 1
;
metabolism
;
Signal Transduction
;
drug effects
;
Silymarin
;
chemistry
;
isolation & purification
;
pharmacology

Result Analysis
Print
Save
E-mail