1.Genotype-Phenotype Correlations and Functional Outcomes in Pediatric Patients with KCNQ2-Related Epilepsy: A Multicenter Observational Study in Korea
Eon Ah KIM ; Mi-Sun YUM ; Seungbok LEE ; Jae So CHO ; Jeehun LEE ; Byung Chan LIM
Annals of Child Neurology 2025;33(2):48-55
Purpose:
Potassium voltage-gated channel subfamily Q member 2 (KCNQ2)-related epilepsy, caused by mutations in the KCNQ2 gene, encompasses a spectrum of epileptic phenotypes, ranging from self-limited epilepsy to severe developmental and epileptic encephalopathy (DEE). Although the mutational background of these disorders has been characterized, predicting outcomes based solely on genetic variants remains challenging.
Methods:
This multicenter observational study investigated the clinical features, genotype-phenotype correlations, and comorbidities in pediatric patients with KCNQ2-related epilepsy in Korea. Conducted across three tertiary hospitals, the study enrolled 20 pediatric patients with genetically confirmed KCNQ2-related epilepsy. Data were collected from medical records, including demographic information, age at seizure onset, types of seizures, comorbidities, and treatment history.
Results:
Of the 20 patients enrolled, nine had self-limited epilepsy, while 11 had DEE. Missense mutations were more prevalent in the DEE group, whereas truncation mutations were associated with milder forms of epilepsy. Although 75% of cases achieved effective seizure control, 55% of patients exhibited comorbidities such as intellectual disability and neuropsychiatric disorders. Genotype-phenotype correlations revealed variability in clinical outcomes, with specific mutations in similar regions resulting in different phenotypes.
Conclusion
This study highlights the complexity of KCNQ2-related epilepsy, demonstrating that genotype-phenotype correlations are not straightforward and may be influenced by genetic modifiers, environmental factors, or dominant negative effects. While seizure control often improves, neurodevelopmental challenges may persist, underscoring the need for therapeutic approaches that address both seizure management and developmental support. Further research into the relevant non-genetic factors is essential to enhance the understanding and treatment of KCNQ2-related epilepsy.
2.Influence of Perception of Patient Safety Culture, Job Stress, and Nursing Work Environment on Patient Safety Nursing Activities by Emergency Room Nurses
Eon Mi LEE ; Jeong Hyun CHO ; Seung Gyeong JANG
Journal of Korean Academy of Fundamental Nursing 2025;32(2):264-274
Purpose:
This study aimed to investigate the influence of perceptions of patient safety culture, job stress, and nursing work environment on patient safety nursing activities among emergency room nurses.
Methods:
This correlational study was conducted from June 5 to July 31, 2024, and targeted 114 emergency room nurses in Busan. A structured self-report questionnaire was used to collect data. Descriptive statistics, independent sample t-tests, one-way ANOVA, Pearson's correlation coefficients, and multiple regression analyses were employed for data analysis.
Results:
Patient safety nursing activities significantly differed by age (F=6.17, p=.001) and total clinical experience (F=8.89, p<.001) among the participants' general characteristics. Positive correlations were identified with perceptions of patient safety culture (r=.70, p<.001) and nursing work environment (r=.27, p=.003). Multiple regression analysis indicated that perception of patient safety culture (β=.72, p<.001) and total clinical experience (β=-.32, p=.011) were significant predictors, accounting for 50.5% (F=20.24, p<.001) of the variance.
Conclusion
The findings indicated that perceptions of patient safety culture and total clinical experience are critical factors to be considered when designing interventions to enhance patient safety nursing activities among emergency room nurses.
3.Genotype-Phenotype Correlations and Functional Outcomes in Pediatric Patients with KCNQ2-Related Epilepsy: A Multicenter Observational Study in Korea
Eon Ah KIM ; Mi-Sun YUM ; Seungbok LEE ; Jae So CHO ; Jeehun LEE ; Byung Chan LIM
Annals of Child Neurology 2025;33(2):48-55
Purpose:
Potassium voltage-gated channel subfamily Q member 2 (KCNQ2)-related epilepsy, caused by mutations in the KCNQ2 gene, encompasses a spectrum of epileptic phenotypes, ranging from self-limited epilepsy to severe developmental and epileptic encephalopathy (DEE). Although the mutational background of these disorders has been characterized, predicting outcomes based solely on genetic variants remains challenging.
Methods:
This multicenter observational study investigated the clinical features, genotype-phenotype correlations, and comorbidities in pediatric patients with KCNQ2-related epilepsy in Korea. Conducted across three tertiary hospitals, the study enrolled 20 pediatric patients with genetically confirmed KCNQ2-related epilepsy. Data were collected from medical records, including demographic information, age at seizure onset, types of seizures, comorbidities, and treatment history.
Results:
Of the 20 patients enrolled, nine had self-limited epilepsy, while 11 had DEE. Missense mutations were more prevalent in the DEE group, whereas truncation mutations were associated with milder forms of epilepsy. Although 75% of cases achieved effective seizure control, 55% of patients exhibited comorbidities such as intellectual disability and neuropsychiatric disorders. Genotype-phenotype correlations revealed variability in clinical outcomes, with specific mutations in similar regions resulting in different phenotypes.
Conclusion
This study highlights the complexity of KCNQ2-related epilepsy, demonstrating that genotype-phenotype correlations are not straightforward and may be influenced by genetic modifiers, environmental factors, or dominant negative effects. While seizure control often improves, neurodevelopmental challenges may persist, underscoring the need for therapeutic approaches that address both seizure management and developmental support. Further research into the relevant non-genetic factors is essential to enhance the understanding and treatment of KCNQ2-related epilepsy.
4.Genotype-Phenotype Correlations and Functional Outcomes in Pediatric Patients with KCNQ2-Related Epilepsy: A Multicenter Observational Study in Korea
Eon Ah KIM ; Mi-Sun YUM ; Seungbok LEE ; Jae So CHO ; Jeehun LEE ; Byung Chan LIM
Annals of Child Neurology 2025;33(2):48-55
Purpose:
Potassium voltage-gated channel subfamily Q member 2 (KCNQ2)-related epilepsy, caused by mutations in the KCNQ2 gene, encompasses a spectrum of epileptic phenotypes, ranging from self-limited epilepsy to severe developmental and epileptic encephalopathy (DEE). Although the mutational background of these disorders has been characterized, predicting outcomes based solely on genetic variants remains challenging.
Methods:
This multicenter observational study investigated the clinical features, genotype-phenotype correlations, and comorbidities in pediatric patients with KCNQ2-related epilepsy in Korea. Conducted across three tertiary hospitals, the study enrolled 20 pediatric patients with genetically confirmed KCNQ2-related epilepsy. Data were collected from medical records, including demographic information, age at seizure onset, types of seizures, comorbidities, and treatment history.
Results:
Of the 20 patients enrolled, nine had self-limited epilepsy, while 11 had DEE. Missense mutations were more prevalent in the DEE group, whereas truncation mutations were associated with milder forms of epilepsy. Although 75% of cases achieved effective seizure control, 55% of patients exhibited comorbidities such as intellectual disability and neuropsychiatric disorders. Genotype-phenotype correlations revealed variability in clinical outcomes, with specific mutations in similar regions resulting in different phenotypes.
Conclusion
This study highlights the complexity of KCNQ2-related epilepsy, demonstrating that genotype-phenotype correlations are not straightforward and may be influenced by genetic modifiers, environmental factors, or dominant negative effects. While seizure control often improves, neurodevelopmental challenges may persist, underscoring the need for therapeutic approaches that address both seizure management and developmental support. Further research into the relevant non-genetic factors is essential to enhance the understanding and treatment of KCNQ2-related epilepsy.
5.Influence of Perception of Patient Safety Culture, Job Stress, and Nursing Work Environment on Patient Safety Nursing Activities by Emergency Room Nurses
Eon Mi LEE ; Jeong Hyun CHO ; Seung Gyeong JANG
Journal of Korean Academy of Fundamental Nursing 2025;32(2):264-274
Purpose:
This study aimed to investigate the influence of perceptions of patient safety culture, job stress, and nursing work environment on patient safety nursing activities among emergency room nurses.
Methods:
This correlational study was conducted from June 5 to July 31, 2024, and targeted 114 emergency room nurses in Busan. A structured self-report questionnaire was used to collect data. Descriptive statistics, independent sample t-tests, one-way ANOVA, Pearson's correlation coefficients, and multiple regression analyses were employed for data analysis.
Results:
Patient safety nursing activities significantly differed by age (F=6.17, p=.001) and total clinical experience (F=8.89, p<.001) among the participants' general characteristics. Positive correlations were identified with perceptions of patient safety culture (r=.70, p<.001) and nursing work environment (r=.27, p=.003). Multiple regression analysis indicated that perception of patient safety culture (β=.72, p<.001) and total clinical experience (β=-.32, p=.011) were significant predictors, accounting for 50.5% (F=20.24, p<.001) of the variance.
Conclusion
The findings indicated that perceptions of patient safety culture and total clinical experience are critical factors to be considered when designing interventions to enhance patient safety nursing activities among emergency room nurses.
6.Genotype-Phenotype Correlations and Functional Outcomes in Pediatric Patients with KCNQ2-Related Epilepsy: A Multicenter Observational Study in Korea
Eon Ah KIM ; Mi-Sun YUM ; Seungbok LEE ; Jae So CHO ; Jeehun LEE ; Byung Chan LIM
Annals of Child Neurology 2025;33(2):48-55
Purpose:
Potassium voltage-gated channel subfamily Q member 2 (KCNQ2)-related epilepsy, caused by mutations in the KCNQ2 gene, encompasses a spectrum of epileptic phenotypes, ranging from self-limited epilepsy to severe developmental and epileptic encephalopathy (DEE). Although the mutational background of these disorders has been characterized, predicting outcomes based solely on genetic variants remains challenging.
Methods:
This multicenter observational study investigated the clinical features, genotype-phenotype correlations, and comorbidities in pediatric patients with KCNQ2-related epilepsy in Korea. Conducted across three tertiary hospitals, the study enrolled 20 pediatric patients with genetically confirmed KCNQ2-related epilepsy. Data were collected from medical records, including demographic information, age at seizure onset, types of seizures, comorbidities, and treatment history.
Results:
Of the 20 patients enrolled, nine had self-limited epilepsy, while 11 had DEE. Missense mutations were more prevalent in the DEE group, whereas truncation mutations were associated with milder forms of epilepsy. Although 75% of cases achieved effective seizure control, 55% of patients exhibited comorbidities such as intellectual disability and neuropsychiatric disorders. Genotype-phenotype correlations revealed variability in clinical outcomes, with specific mutations in similar regions resulting in different phenotypes.
Conclusion
This study highlights the complexity of KCNQ2-related epilepsy, demonstrating that genotype-phenotype correlations are not straightforward and may be influenced by genetic modifiers, environmental factors, or dominant negative effects. While seizure control often improves, neurodevelopmental challenges may persist, underscoring the need for therapeutic approaches that address both seizure management and developmental support. Further research into the relevant non-genetic factors is essential to enhance the understanding and treatment of KCNQ2-related epilepsy.
7.Genotype-Phenotype Correlations and Functional Outcomes in Pediatric Patients with KCNQ2-Related Epilepsy: A Multicenter Observational Study in Korea
Eon Ah KIM ; Mi-Sun YUM ; Seungbok LEE ; Jae So CHO ; Jeehun LEE ; Byung Chan LIM
Annals of Child Neurology 2025;33(2):48-55
Purpose:
Potassium voltage-gated channel subfamily Q member 2 (KCNQ2)-related epilepsy, caused by mutations in the KCNQ2 gene, encompasses a spectrum of epileptic phenotypes, ranging from self-limited epilepsy to severe developmental and epileptic encephalopathy (DEE). Although the mutational background of these disorders has been characterized, predicting outcomes based solely on genetic variants remains challenging.
Methods:
This multicenter observational study investigated the clinical features, genotype-phenotype correlations, and comorbidities in pediatric patients with KCNQ2-related epilepsy in Korea. Conducted across three tertiary hospitals, the study enrolled 20 pediatric patients with genetically confirmed KCNQ2-related epilepsy. Data were collected from medical records, including demographic information, age at seizure onset, types of seizures, comorbidities, and treatment history.
Results:
Of the 20 patients enrolled, nine had self-limited epilepsy, while 11 had DEE. Missense mutations were more prevalent in the DEE group, whereas truncation mutations were associated with milder forms of epilepsy. Although 75% of cases achieved effective seizure control, 55% of patients exhibited comorbidities such as intellectual disability and neuropsychiatric disorders. Genotype-phenotype correlations revealed variability in clinical outcomes, with specific mutations in similar regions resulting in different phenotypes.
Conclusion
This study highlights the complexity of KCNQ2-related epilepsy, demonstrating that genotype-phenotype correlations are not straightforward and may be influenced by genetic modifiers, environmental factors, or dominant negative effects. While seizure control often improves, neurodevelopmental challenges may persist, underscoring the need for therapeutic approaches that address both seizure management and developmental support. Further research into the relevant non-genetic factors is essential to enhance the understanding and treatment of KCNQ2-related epilepsy.
8.Influence of Perception of Patient Safety Culture, Job Stress, and Nursing Work Environment on Patient Safety Nursing Activities by Emergency Room Nurses
Eon Mi LEE ; Jeong Hyun CHO ; Seung Gyeong JANG
Journal of Korean Academy of Fundamental Nursing 2025;32(2):264-274
Purpose:
This study aimed to investigate the influence of perceptions of patient safety culture, job stress, and nursing work environment on patient safety nursing activities among emergency room nurses.
Methods:
This correlational study was conducted from June 5 to July 31, 2024, and targeted 114 emergency room nurses in Busan. A structured self-report questionnaire was used to collect data. Descriptive statistics, independent sample t-tests, one-way ANOVA, Pearson's correlation coefficients, and multiple regression analyses were employed for data analysis.
Results:
Patient safety nursing activities significantly differed by age (F=6.17, p=.001) and total clinical experience (F=8.89, p<.001) among the participants' general characteristics. Positive correlations were identified with perceptions of patient safety culture (r=.70, p<.001) and nursing work environment (r=.27, p=.003). Multiple regression analysis indicated that perception of patient safety culture (β=.72, p<.001) and total clinical experience (β=-.32, p=.011) were significant predictors, accounting for 50.5% (F=20.24, p<.001) of the variance.
Conclusion
The findings indicated that perceptions of patient safety culture and total clinical experience are critical factors to be considered when designing interventions to enhance patient safety nursing activities among emergency room nurses.
9.Differences in the incidence, characteristics, and outcomes of patients with acute kidney injury in the medical and surgical intensive care units
Yeji LEE ; Taeil KIM ; Dong Eon KIM ; Eun Mi JO ; Da Woon KIM ; Hyo Jin KIM ; Eun Young SEONG ; Sang Heon SONG ; Harin RHEE
Kidney Research and Clinical Practice 2024;43(4):518-527
Though acute kidney injury (AKI) is a prevalent complication in critically ill patients, knowledge on the epidemiological differences and clinical characteristics of patients with AKI admitted to medical and surgical intensive care units (ICUs) remains limited. Methods: Electronic medical records of patients in ICUs in Pusan National University Hospital and Pusan National University Hospital Yangsan, from January 2011 to December 2020, were retrospectively analyzed. Different characteristics of AKI between patients were analyzed. The contribution of AKI to the in-hospital mortality rate was assessed using a Cox proportional hazards model. Results: A total of 7,150 patients were included in this study. AKI was more frequent in medical (48.7%) than in surgical patients (19.7%), with the severity of AKI higher in medical patients. In surgical patients, hospital-acquired AKI was more frequent (51.0% vs. 49.0%), whereas community-acquired AKI was more common in medical patients (58.5% vs. 41.5%). 16.9% and 5.9% of medical and surgical patients died in the hospital, respectively. AKI affected patient groups to different degrees. In surgical patients, AKI patients had 4.778 folds higher risk of mortality (95% confidence interval [CI], 3.577–6.382; p < 0.001) than non-AKI patients; whereas in medical AKI patients, it was 1.239 (95% CI, 1.051–1.461; p = 0.01). Conclusion: While the prevalence of AKI itself is higher in medical patients, the impact of AKI on mortality was stronger in surgical patients compared to medical patients. This suggests that more attention is needed for perioperative patients to prevent and manage AKI.
10.The role of nafamostat mesylate anticoagulation in continuous kidney replacement therapy for critically ill patients with bleeding tendencies: a retrospective study on patient outcomes and safety
Taeil KIM ; Dong Eon KIM ; Eun Mi JO ; Yeji LEE ; Da Woon KIM ; Hyo Jin KIM ; Eun Young SEONG ; Sang Heon SONG ; Harin RHEE
Kidney Research and Clinical Practice 2024;43(4):469-479
Continuous kidney replacement therapy (CKRT) is crucial in the management of acute kidney injury in intensive care units (ICUs). Nonetheless, the optimal anticoagulation strategy for patients with bleeding tendencies remains debated. This study aimed to evaluate patient outcomes and safety of nafamostat mesylate (NM) compared with no anticoagulation (NA) in critically ill patients with bleeding tendencies who were undergoing CKRT. Methods: This retrospective study enrolled 2,313 patients who underwent CKRT between March 2013 and December 2022 at the third affiliated hospital in South Korea. After applying the exclusion criteria, 490 patients were included in the final analysis, with 245 patients in the NM and NA groups each, following 1:1 propensity score matching. Subsequently, in-hospital mortality, incidence of bleeding complications, agranulocytosis, hyperkalemia, and length of hospital stay were assessed. Results: No significant differences were observed between the groups regarding the lengths of hospital and ICU stays or the incidence of agranulocytosis and hyperkalemia. The NM group showed a smaller decrease in hemoglobin levels during CKRT (–1.90 g/dL vs. –2.39 g/dL) and less need for blood product transfusions than the NA group. Furthermore, the NM group exhibited a survival benefit in patients who required transfusion of all three blood products. Conclusion: NM is an effective and safe anticoagulant for CKRT in critically ill patients, especially those requiring transfusion of all three blood products. Although these findings are promising, further multicenter studies are needed to validate them and explore the mechanisms underlying the observed benefits.

Result Analysis
Print
Save
E-mail