2.Non-linear association between long-term air pollution exposure and risk of metabolic dysfunction-associated steatotic liver disease.
Wei-Chun CHENG ; Pei-Yi WONG ; Chih-Da WU ; Pin-Nan CHENG ; Pei-Chen LEE ; Chung-Yi LI
Environmental Health and Preventive Medicine 2024;29():7-7
BACKGROUND:
Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD) has become a global epidemic, and air pollution has been identified as a potential risk factor. This study aims to investigate the non-linear relationship between ambient air pollution and MASLD prevalence.
METHOD:
In this cross-sectional study, participants undergoing health checkups were assessed for three-year average air pollution exposure. MASLD diagnosis required hepatic steatosis with at least 1 out of 5 cardiometabolic criteria. A stepwise approach combining data visualization and regression modeling was used to determine the most appropriate link function between each of the six air pollutants and MASLD. A covariate-adjusted six-pollutant model was constructed accordingly.
RESULTS:
A total of 131,592 participants were included, with 40.6% met the criteria of MASLD. "Threshold link function," "interaction link function," and "restricted cubic spline (RCS) link functions" best-fitted associations between MASLD and PM2.5, PM10/CO, and O3 /SO2/NO2, respectively. In the six-pollutant model, significant positive associations were observed when pollutant concentrations were over: 34.64 µg/m3 for PM2.5, 57.93 µg/m3 for PM10, 56 µg/m3 for O3, below 643.6 µg/m3 for CO, and within 33 and 48 µg/m3 for NO2. The six-pollutant model using these best-fitted link functions demonstrated superior model fitting compared to exposure-categorized model or linear link function model assuming proportionality of odds.
CONCLUSION
Non-linear associations were found between air pollutants and MASLD prevalence. PM2.5, PM10, O3, CO, and NO2 exhibited positive associations with MASLD in specific concentration ranges, highlighting the need to consider non-linear relationships in assessing the impact of air pollution on MASLD.
Humans
;
Nitrogen Dioxide
;
Cross-Sectional Studies
;
Air Pollution/analysis*
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Liver Diseases
;
Environmental Exposure/analysis*
3.Characteristics and Differences of Household Fine Particulate Matter Pollution Caused by Fuel Burning in Urban and Rural Areas in China.
Yu ZHANG ; Man CAO ; Xue-Yan HAN ; Tian-Jia GUAN ; Hui-Zhong SHEN ; Yuan-Li LIU
Acta Academiae Medicinae Sinicae 2023;45(3):382-389
Objective To explore the overall level,distribution characteristics,and differences in household fine particulate matter (PM2.5) pollution caused by fuel burning in urban and rural areas in China. Methods The relevant articles published from 1991 to 2021 were retrieved and included in this study.The data including the average concentration of household PM2.5 and urban and rural areas were extracted,and the stoves and fuel types were reclassified.The average concentration of PM2.5 in different areas was calculated and analyzed by nonparametric test. Results The average household PM2.5 concentration in China was (178.81±249.91) μg/m3.The mean household PM2.5 concentration was higher in rural areas than in urban areas[(206.08±279.40) μg/m3 vs. (110.63±131.16) μg/m3;Z=-5.45,P<0.001] and higher in northern areas than in southern areas[(224.27±301.66) μg/m3 vs.(130.11±140.61) μg/m3;Z=-2.38,P=0.017].The north-south difference in household PM2.5 concentration was more significant in rural areas than in urban areas[(324.19±367.94) μg/m3 vs.(141.20±151.05) μg/m3,χ2=-5.06,P<0.001].The PM2.5 pollution level showed differences between urban and rural households using different fuel types (χ2=92.85,P<0.001),stove types (χ2=74.42,P<0.001),and whether they were heating (Z=-4.43,P<0.001).Specifically,rural households mainly used solid fuels (manure,charcoal,coal) and traditional or improved stoves,while urban households mainly used clean fuels (gas) and clean stoves.The PM2.5 concentrations in heated households were higher than those in non-heated households in both rural and urban areas (Z=-4.43,P<0.001). Conclusions The household PM2.5 pollution caused by fuel combustion in China remains a high level.The PM2.5 concentration shows a significant difference between urban and rural households,and the PM2.5 pollution is more serious in rural households.The difference in the household PM2.5 concentration between urban and rural areas is more significant in northern China.PM2.5 pollution in the households using solid fuel,traditional stoves,and heating is serious,and thus targeted measures should be taken to control PM2.5 pollution in these households.
Humans
;
Particulate Matter/analysis*
;
Air Pollution, Indoor/analysis*
;
Cooking
;
Environmental Exposure/analysis*
;
China
;
Rural Population
4.Progress and future perspective of epidemiological research of air pollution and climate change in the context of achieving carbon peaking and carbon neutrality goals.
Cong LIU ; Ren Jie CHEN ; Hai Dong KAN
Chinese Journal of Epidemiology 2023;44(3):353-359
Climate change is the great health challenge for human beings in the 21st century. Air pollution is also an important public health problem worldwide. China announced the climate commitment to achieve carbon peaking by 2030 and carbon neutrality by 2060. Achieving these goals would not only have far-reaching effects on air pollution control and climate change, but also improve the population health in China. Air pollution and climate change epidemiology are important aspects of environmental epidemiology. In this paper, we discuss the current status and future development of epidemiological research of air pollution and climate change in the context of achieving carbon peaking and carbon neutrality goals to provide ideas and suggestions for environmental and health studies in the future.
Humans
;
Climate Change
;
Goals
;
Air Pollution/analysis*
;
Environmental Health
;
Public Health
;
China/epidemiology*
;
Carbon
5.Ambient fine particulate matter and cardiopulmonary health risks in China.
Tiantian LI ; Yi ZHANG ; Ning JIANG ; Hang DU ; Chen CHEN ; Jiaonan WANG ; Qiutong LI ; Da FENG ; Xiaoming SHI
Chinese Medical Journal 2023;136(3):287-294
In China, the level of ambient fine particulate matter (PM 2.5 ) pollution far exceeds the air quality standards recommended by the World Health Organization. Moreover, the health effects of PM 2.5 exposure have become a major public health issue. More than half of PM 2.5 -related excess deaths are caused by cardiopulmonary disease, which has become a major health risk associated with PM 2.5 pollution. In this review, we discussed the latest epidemiological advances relating to the health effects of PM 2.5 on cardiopulmonary diseases in China, including studies relating to the effects of PM 2.5 on mortality, morbidity, and risk factors for cardiovascular and respiratory diseases. These data provided important evidence to highlight the cardiopulmonary risk associated with PM 2.5 across the world. In the future, further studies need to be carried out to investigate the specific relationship between the constituents and sources of PM 2.5 and cardiopulmonary disease. These studies provided scientific evidence for precise reduction measurement of pollution sources and public health risks. It is also necessary to identify effective biomarkers and elucidate the biological mechanisms and pathways involved; this may help us to take steps to reduce PM 2.5 pollution and reduce the incidence of cardiopulmonary disease.
Humans
;
Particulate Matter/analysis*
;
Air Pollution/adverse effects*
;
Risk Factors
;
Respiratory Tract Diseases
;
China/epidemiology*
;
Environmental Exposure/adverse effects*
6.Ambient Fine Particulate Matter Exposure and Blood Pressure: Evidence from a Large Chinese Multiple Follow-Up Study.
Bahabaike JIANGTULU ; Chang Xin LAN ; Jun Xi CHEN ; Xi CHEN ; Bin WANG ; Tao XUE
Biomedical and Environmental Sciences 2023;36(1):38-49
OBJECTIVE:
This study aimed to investigate the association of ambient PM2.5 exposure with blood pressure (BP) at the population level in China.
METHODS:
A total of 14,080 participants who had at least two valid blood pressure records were selected from the China Health and Retirement Longitudinal Survey during 2011-2015. Their long-term PM2.5 exposure was assessed at the geographical level, on the basis of a regular 0.1° × 0.1° grid over China. A mixed-effects regression model was used to assess associations.
RESULTS:
Each decrease of 10 μg/m3 in the 1 year-mean PM2.5 concentration (FPM1Y) was associated with a decrease of 1.24 [95% confidence interval (CI): 0.84-1.64] mmHg systolic BP (SBP) and 0.50 (95% CI: 0.25-0.75) mmHg diastolic BP (DBP), respectively. A robust association was observed between the long-term decrease in PM2.5 and decreased BP in the middle-aged and older population. Using a generalized additive mixed model, we further found that SBP increased nonlinearly overall with FPM1Y but in an approximately linear range when the FPM1Y concentration was < 70 µg/m3; In contrast, DBP increased approximately linearly without a clear threshold.
CONCLUSION
Efficient control of PM2.5 air pollution may promote vascular health in China. Our study provides robust scientific support for making the related air pollution control policies.
Middle Aged
;
Humans
;
Aged
;
Particulate Matter/analysis*
;
Blood Pressure
;
Air Pollutants/analysis*
;
Follow-Up Studies
;
Hypertension/etiology*
;
East Asian People
;
Environmental Exposure/analysis*
;
Air Pollution/analysis*
;
China/epidemiology*
8.Revision and prospect of "Standards for indoor air quality(GB/T 18883-2022)" in China.
Chinese Journal of Preventive Medicine 2023;57(11):1725-1728
The formulation and revision of the detection methods of indoor air quality standards is an important, rigorous and delicate endeavor. The standards for indoor air quality (GB/T 18883-2022) were issued by the State Administration of Market Regulation and the Standardization Administration on July 11, 2022, and implemented on February 1, 2023 by replacing indoor air quality standards (GB/T 18883-2002). The revised standard specifies hygienic requirements for physical, chemical, biological and radioactive indicators in indoor air and the corresponding test methods. This article interpreted the revision background, drafting principles, main indicators and methods, as well as the revision basis of the standards. Recommendations for the implementation of the standards are also proposed.
Humans
;
Air Pollution, Indoor/prevention & control*
;
Environmental Monitoring
;
Reference Standards
;
China
;
Air Pollutants/analysis*
9.Study on formulation and revision of standard limit for formaldehyde in the "Standards for indoor air quality(GB/T 18883-2022)" in China.
Xiao Yan DONG ; Jiao WANG ; Xian Liang WANG ; Tian Tian LI ; Qin WANG ; Dong Qun XU
Chinese Journal of Preventive Medicine 2023;57(11):1748-1751
Formaldehyde, as an important pollutant in indoor air, has always been of great concern. In the newly issued "Standards for indoor air quality (GB/T 18883-2022)", the standard limit of formaldehyde has been restricted to 0.08 mg/m3. In order to better promote the implementation and application of this new standard, this study reviewed and interpreted the relevant technical content for determining the standard limit, including the indoor concentration and human exposure levels of formaldehyde, the health effects of formaldehyde, and the derivation of safety reference values. It also proposed prospect for the future development and revision of quality standards for formaldehyde in indoor air.
Humans
;
Air Pollution, Indoor
;
Air Pollutants/analysis*
;
Formaldehyde/analysis*
;
China
;
Environmental Pollutants
10.Study on revision of standard limits for benzene in"Standards for indoor air quality(GB/T 18883-2022)"in China.
Guo Min CHEN ; Tian Tian LI ; Yan Jun DU ; Shuai JIANG ; Dao Kui FANG ; Xiao Heng LI ; Ning LIU ; Shu Yuan YU
Chinese Journal of Preventive Medicine 2023;57(11):1752-1755
Benzene, as a major indoor pollutant, has received widespread attention. In order to better control indoor benzene pollution and protect people's health, the limit value of benzene in the"Standards for indoor air quality (GB/T 18883-2022)'' was reduced from 0.11 mg/m3 to 0.03 mg/m3. This study reviewed and discussed the relevant technical contents of the determination of benzene limit value, including the exposure status of benzene, health effects, and derivation of the limit value. It also proposed prospects for the future direction of formulating indoor air benzene standards.
Humans
;
Air Pollution, Indoor/prevention & control*
;
Benzene/analysis*
;
Air Pollutants/analysis*
;
Environmental Pollutants
;
China
;
Environmental Monitoring

Result Analysis
Print
Save
E-mail