1.Non-coding RNAs in viral myocarditis.
Jie HU ; Yangyang ZHU ; Qiong YUAN ; Dan YAN ; Chaozhi LI ; Hengzhong GUO ; Lili LU
Chinese Journal of Biotechnology 2021;37(9):3101-3107
Viral myocarditis (VMC) is a disease characterized by inflammation of myocardial cells caused by viral infection. Since the pathogenesis mechanism of VMC has not been fully elucidated, the diagnosis and treatment of this disease remains extremely challenging. Non-coding RNAs (ncRNAs) are a class of RNAs that do not encode proteins. An increasing number of studies have shown that ncRNAs are involved in regulating the occurrence and development of VMC, thus providing potential new targets for the treatment and diagnosis of VMC. This review summarizes the possible roles of ncRNAs in the pathogenesis and diagnosis of VMC revealed recently.
Coxsackievirus Infections
;
Enterovirus B, Human
;
Humans
;
Inflammation
;
Myocarditis/genetics*
;
Virus Diseases/genetics*
2.RT-nPCR Assays for Amplification and Sequencing of VP1 Genes in Human Enterovirus A-D from Clinical Specimens.
Wei CHEN ; Yu Wei WENG ; Wen Xiang HE ; Ying ZHU ; Ting Ting YU ; Jian Feng XIE ; Kui Cheng ZHENG ; Yan Sheng YAN ; Yong Jun ZHANG ; Wen Chang ZHANG
Biomedical and Environmental Sciences 2020;33(11):829-838
Objective:
To develop RT-nPCR assays for amplifying partial and complete VP1 genes of human enteroviruses (HEVs) from clinical samples and to contribute to etiological surveillance of HEV-related diseases.
Methods:
A panel of RT-nPCR assays, consisting of published combined primer pairs for VP1 genes of HEV A-C and in-house designed primers for HEV-D, was established in this study. The sensitivity of each RT-nPCR assay was evaluated with serially diluted virus stocks of five serotypes expressed as CCID
Results:
The sensitivity of RT-nPCR assays for amplifying partial VP1 gene of HEVs was 0.1 CCID
Conclusion
This RT-nPCR system is capable of amplifying the partial and complete VP1 gene of HEV A-D, providing rapid, sensitive, and reliable options for molecular typing and molecular epidemiology of HEVs in clinical specimens.
Capsid Proteins/genetics*
;
Enterovirus A, Human/genetics*
;
Enterovirus B, Human/genetics*
;
Enterovirus C, Human/genetics*
;
Enterovirus D, Human/genetics*
;
Humans
;
Molecular Epidemiology/methods*
;
Molecular Typing/methods*
;
Reverse Transcriptase Polymerase Chain Reaction/methods*
3.Molecular Epidemiology of Coxsackievirus B1-5 Associated with HFMD in Fujian Province, China, 2011-2016.
Wei CHEN ; Yu Wei WENG ; Yong Jun ZHANG ; Wen Xiang HE ; Ying ZHU ; Ting Ting YU ; Jian Feng XIE ; Kui Cheng ZHENG ; Yan Sheng YAN ; Wen Chang ZHANG
Biomedical and Environmental Sciences 2019;32(8):633-638
4.Antiviral Activity of Gemcitabine Against Echovirus 30 Infection in Vitro
Hwa Jung CHOI ; Jae Hyoung SONG ; Kyungah YOON
Journal of Bacteriology and Virology 2019;49(4):203-211
Echovirus 30 is one of the major causes of meningitis in children and adults. The purpose of our current study was to investigate whether selected antiviral drugs could provide antiviral activity against echovirus 30. Using RD cells, we assessed the cytopathic effect of echovirus 30, including viral RNA levels as indicators of viral replication. The effects of gemcitabine were compared to rupintrivir, a well-known antiviral drug. To understand the activity gemcitabine exerts on the viral life cycle, time course and time-of-addition assays were implemented. The most effective compounds against echovirus 30 were gemcitabine and rupintrivir, as demonstrated by their concentration-dependent activity. Gemcitabine affects the early stages of echovirus 30 infection by disrupting viral replication. However, gemcitabine failed to directly inactivate echovirus 30 particles or impede viral uptake into the RD cells. Gemcitabine can be considered as a lead candidate in the development of echovirus 30 antiviral drugs, specifically in the early stages of echovirus 30 replication.
Adult
;
Antiviral Agents
;
Child
;
Enterovirus B, Human
;
Humans
;
In Vitro Techniques
;
Life Cycle Stages
;
Meningitis
;
RNA, Viral
5.Coxsackievirus B3 Infection Triggers Autophagy through 3 Pathways of Endoplasmic Reticulum Stress.
Xiao Nuan LUO ; Hai Lan YAO ; Juan SONG ; Qin Qin SONG ; Bing Tian SHI ; Dong XIA ; Jun HAN
Biomedical and Environmental Sciences 2018;31(12):867-875
OBJECTIVE:
Autophagy is a highly conserved intracellular degradation pathway. Many picornaviruses induce autophagy to benefit viral replication, but an understanding of how autophagy occurs remains incomplete. In this study, we explored whether coxsackievirus B3 (CVB3) infection induced autophagy through endoplasmic reticulum (ER) stress.
METHODS:
In CVB3-infected HeLa cells, the specific molecules of ER stress and autophagy were detected using Western blotting, reverse transcription polymerase chain reaction (RT-PCR), and confocal microscopy. Then PKR-like ER protein kinase (PERK) inhibitor, inositol-requiring protein-1 (IRE1) inhibitor, or activating transcription factor-6 (ATF6) inhibitor worked on CVB3-infected cells, their effect on autophagy was assessed by Western blotting for detecting microtubule-associated protein light chain 3 (LC3).
RESULTS:
CVB3 infection induced ER stress, and ER stress sensors PERK/eIF2α, IRE1/XBP1, and ATF6 were activated. CVB3 infection increased the accumulation of green fluorescent protein (GFP)-LC3 punctuation and induced the conversion from LC3-I to phosphatidylethanolamine-conjugated LC3-1 (LC3-II). CVB3 infection still decreased the expression of mammalian target of rapamycin (mTOR) and p-mTOR. Inhibition of PERK, IRE1, or ATF6 significantly decreased the ratio of LC3-II to LC3-I in CVB3-infected HeLa cells.
CONCLUSION
CVB3 infection induced autophagy through ER stress in HeLa cells, and PERK, IRE1, and ATF6a pathways participated in the regulation of autophagy. Our data suggested that ER stress may inhibit mTOR signaling pathway to induce autophagy during CVB3 infection.
Activating Transcription Factor 6
;
metabolism
;
Autophagy
;
Coxsackievirus Infections
;
metabolism
;
Endoplasmic Reticulum Stress
;
Endoribonucleases
;
metabolism
;
Enterovirus B, Human
;
HeLa Cells
;
Humans
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Signal Transduction
;
eIF-2 Kinase
;
metabolism
6.Neurologic Manifestations according to Serotypes of Enterovirus in Pediatric Inpatient in Incheon.
Keun Young KIM ; Ji Sun PARK ; Mun Ju KWON ; Kyung Seon KIM ; Young Se KWON
Journal of the Korean Child Neurology Society 2017;25(4):255-260
PURPOSE: Enterovirus infection in children can manifest various disease and enterovirus have many serotypes. This study was aimed to investigate neurologic manifestations according to serotypes of enterovirus in pediatric inpatients in Incheon. METHODS: We collected the stool samples from the admitted pediatric patients in Inha University Hospital from January 2015 to September 2016. Enterovirus detection and serotypes identification were performed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and semi-nested RT-PCR. RESULTS: A total of 527 samples were collected during study period and 170 patients (32.2%) were diagnosed with enterovirus infections. Genetic sequences of enteroviruses were identified: echovirus 18 (50, 40.5%), enterovirus 71 (12, 9.6%), coxakievirus A10 (10, 8.0%), echovirus 6 (7, 5.6%). Virus in patient with meningitis were identified: echovirus 18 (15, 75%), coxakievirus B5 (2, 10%), enterovirus 71 (2, 10%), and echovirus 6 (1, 5%). Neurologic manifestations of echovirus 18 are headache (15, 30%), vomiting (17, 34%), meningeal irritation sign (10, 20.0%). And enterovirus 71 have headache (3, 25%), vomiting (3, 25%), meningeal irritation sign (2, 16.0%), seizure (1, 8.3%), neurologic sequelae (1, 8.3%). Echovirus 18 and neurologic manifestation have a statistically significant correlation with other serotypes (r=0.701, P < 0.01) CONCLUSION: Echovirus 18 infection was more prominent in neurological symptoms than in other serotypes. The major serotype of meningitis was echovirus 18 but there was no reported neurologic sequelae. Enterovirus infection has different neurological symptoms, depending on the serotypes.
Child
;
Echovirus 6, Human
;
Enterovirus B, Human
;
Enterovirus Infections
;
Enterovirus*
;
Headache
;
Humans
;
Incheon*
;
Inpatients*
;
Meningitis
;
Neurologic Manifestations*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Seizures
;
Serogroup*
;
Vomiting
7.Generation, characterization, and application in serodiagnosis of recombinant swine vesicular disease virus-like particles.
Wanhong XU ; Melissa GOOLIA ; Tim SALO ; Zhidong ZHANG ; Ming YANG
Journal of Veterinary Science 2017;18(S1):361-370
Swine vesicular disease (SVD) is a highly contagious viral disease that causes vesicular disease in pigs. The importance of the disease is due to its indistinguishable clinical signs from those of foot-and-mouth disease, which prevents international trade of swine and related products. SVD-specific antibody detection via an enzyme-linked immunosorbent assay (ELISA) is the most versatile and commonly used method for SVD surveillance and export certification. Inactivated SVD virus is the commonly used antigen in SVD-related ELISA. A recombinant SVD virus-like particle (VLP) was generated by using a Bac-to-Bac baculovirus expression system. Results of SVD-VLP analyses from electron microscopy, western blotting, immunofluorescent assay, and mass spectrometry showed that the recombinant SVD-VLP morphologically resemble authentic SVD viruses. The SVD-VLP was evaluated as a replacement for inactivated whole SVD virus in competitive and isotype-specific ELISAs for the detection of antibodies against SVD virus. The recombinant SVD-VLP assay produced results similar to those from inactivated whole virus antigen ELISA. The VLP-based ELISA results were comparable to those from the virus neutralization test for antibody detection in pigs experimentally inoculated with SVD virus. Use of the recombinant SVD-VLP is a safe and valuable alternative to using SVD virus antigen in diagnostic assays.
Animals
;
Antibodies
;
Baculoviridae
;
Blotting, Western
;
Certification
;
Enterovirus B, Human
;
Enzyme-Linked Immunosorbent Assay
;
Foot-and-Mouth Disease
;
Mass Spectrometry
;
Methods
;
Microscopy, Electron
;
Neutralization Tests
;
Serologic Tests*
;
Swine Vesicular Disease*
;
Swine*
;
Virus Diseases
8.An Improved Barcoded Oligonucleotide Primers-based Next-generation Sequencing Approach for Direct Identification of Viral Pathogens in Clinical Specimens.
Chun Hua WANG ; Kai NIE ; Yi ZHANG ; Ji WANG ; Shuai Feng ZHOU ; Xin Na LI ; Hang Yu ZHOU ; Shun Xiang QI ; Xue Jun MA
Biomedical and Environmental Sciences 2017;30(1):22-34
<b>OBJECTIVEb>To provide a feasible and cost-effective next-generation sequencing (NGS) method for accurate identification of viral pathogens in clinical specimens, because enormous limitations impede the clinical use of common NGS, such as high cost, complicated procedures, tremendous data analysis, and high background noise in clinical samples.
<b>METHODSb>Viruses from cell culture materials or clinical specimens were identified following an improved NGS procedure: reduction of background noise by sample preprocessing, viral enrichment by barcoded oligonucleotide (random hexamer or non-ribosomal hexanucleotide) primer-based amplification, fragmentation-free library construction and sequencing of one-tube mixtures, as well as rapid data analysis using an in-house pipeline.
<b>RESULTSb>NGS data demonstrated that both barcoded primer sets were useful to simultaneously capture multiple viral pathogens in cell culture materials or clinical specimens and verified that hexanucleotide primers captured as many viral sequences as hexamers did. Moreover, direct testing of clinical specimens using this improved hexanucleotide primer-based NGS approach provided further detailed genotypes of enteroviruses causing hand, foot, and mouth disease (HFMD) and identified other potential viruses or differentiated misdiagnosis events.
<b>CONCLUSIONb>The improved barcoded oligonucleotide primer-based NGS approach is simplified, time saving, cost effective, and appropriate for direct identification of viral pathogens in clinical practice.
Clinical Laboratory Techniques ; DNA Barcoding, Taxonomic ; DNA Primers ; Enterovirus ; classification ; genetics ; isolation & purification ; Herpesvirus 4, Human ; genetics ; isolation & purification ; Humans ; Influenza B virus ; genetics ; isolation & purification ; Real-Time Polymerase Chain Reaction ; Sequence Analysis, DNA ; methods ; Sequence Analysis, RNA ; methods
9.Antiviral Activity of Itraconazole against Echovirus 30 Infection In Vitro.
Jae Sug LEE ; Hwa Jung CHOI ; Jae Hyoung SONG ; Hyun Jeong KO ; Kyungah YOON ; Jeong Min SEONG
Osong Public Health and Research Perspectives 2017;8(5):318-324
OBJECTIVES: Echovirus 30 is a major cause of meningitis in children and adults. The aim of this study was to investigate whether the antifungal drug itraconazole could exhibit antiviral activity against echovirus 30. METHODS: The cytopathic effect and viral RNA levels were assessed in RD cells as indicators of viral replication. The effects of itraconazole were compared to those of two known antiviral drugs, rupintrivir and pleconaril. The time course and time-of-addition assays were used to approximate the time at which itraconazole exerts its activity in the viral cycle. RESULTS: Itraconazole and rupintrivir demonstrated the greatest potency against echovirus 30, demonstrating concentration-dependent activity, whereas pleconaril showed no antiviral activity. Itraconazole did not directly inactivate echovirus 30 particles or impede viral uptake into RD cells, but did affect the initial stages of echovirus 30 infection through interference with viral replication. CONCLUSION: Itraconazole can be considered a lead candidate for the development of antiviral drugs against echovirus 30 that may be used during the early stages of echovirus 30 replication.
Adult
;
Antiviral Agents
;
Child
;
Enterovirus B, Human*
;
Humans
;
In Vitro Techniques*
;
Itraconazole*
;
Meningitis
;
RNA, Viral
10.Tranilast inhibits myocardial fibrosis in mice with viral myocarditis.
Chun WEN ; Gui XIE ; Ping ZENG ; Lin-Feng HUANG ; Chun-Yuan CHEN
Chinese Journal of Contemporary Pediatrics 2016;18(5):446-454
<b>OBJECTIVEb>To investigate the effect of tranilast on myocardial fibrosis in mice with viral myocarditis (VMC).
<b>METHODSb>Male balb/c mice (n=72) were randomly divided into control, VMC and tranilast groups (n=24 each). In the VMC and tranilast groups, the mice were infected with Coxsackie virus B3 (CVB3) to prepare VMC model, while the control group was treated with Eagle's medium. After modeling, the tranilast group was administrated with tranilast [200 mg/(kg.d)] until the day before sampling. On days 7, 14 and 28 after CVB3 or Eagle's medium infection, heart specimens (n=8) were taken and examined after Toluidine blue staining and Nissl staining for counts of mast cells (MC), hematoxylin-eosin staining for myocardial pathological changes, and Masson staining for myocardial fibrosis. The expression of CTGF and type I collagen (Col I) in the myocardial tissue was measured by RT-PCR and Western blot. The correlations of CTGF mRNA expression with MC counts and Col I expression were analyzed.
<b>RESULTSb>The myocardial pathological changes and collagen volume fraction in the VMC group were significantly higher than in the control group at all three time points (P<0.05). Tranilast treatment significantly decreased the myocardial pathological changes and collagen volume fraction compared with the VMC group (P<0.05). The mRNA and protein expression of CTGF and Col I increased in the VMC group compared with the control group, and the increases were reduced with tranilast treatment (P<0.05). The number of MC was positively correlated to CTGF mRNA expression on the 7th day and 14th day (r=0.439, P=0.049) in the VMC group. There were positive correlations between the mRNA expression of Col I and CTGF on the 7th day and 14th day (r=0.646, P=0.007) and the 28th day (r=0.326, P=0.031).
<b>CONCLUSIONSb>Tranilast may inhibit the aggregation of MC and down-regulate the expression of CTGF, relieving myocardial fibrosis of mice with VMC.
Animals ; Collagen Type I ; genetics ; Connective Tissue Growth Factor ; genetics ; Coxsackievirus Infections ; drug therapy ; Enterovirus B, Human ; Fibrosis ; Male ; Mice ; Mice, Inbred BALB C ; Myocarditis ; drug therapy ; Myocardium ; pathology ; RNA, Messenger ; analysis ; ortho-Aminobenzoates ; pharmacology

Result Analysis
Print
Save
E-mail