1.Neuronal Histone Methyltransferase EZH2 Regulates Neuronal Morphogenesis, Synaptic Plasticity, and Cognitive Behavior in Mice.
Mei ZHANG ; Yong ZHANG ; Qian XU ; Joshua CRAWFORD ; Cheng QIAN ; Guo-Hua WANG ; Jiang QIAN ; Xin-Zhong DONG ; Mikhail V PLETNIKOV ; Chang-Mei LIU ; Feng-Quan ZHOU
Neuroscience Bulletin 2023;39(10):1512-1532
The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.
Animals
;
Mice
;
Enhancer of Zeste Homolog 2 Protein/metabolism*
;
Histone Methyltransferases/metabolism*
;
Histones/genetics*
;
Morphogenesis
;
Neuronal Plasticity
;
Neurons/metabolism*
2.Relationship between Expression of Runt-related Transcription Factor 3 and Enhancer of zeste Homolog 2 Proteins and Sensitivity to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer.
Ze-Long YUAN ; Xue-Liang WU ; Ming QU ; Jun XUE ; Lei HAN ; Guang-Yuan SUN
Acta Academiae Medicinae Sinicae 2021;43(6):856-864
Objective To investigate the expression and correlation of Runt-related transcription factor 3(RUNX3)and enhancer of zeste homolog 2(EZH2)in rectal cancer,and to reveal the relationship between the expression of RUNX3 and EZH2 and the sensitivity of XELOX regimen to neoadjuvant chemotherapy in locally advanced rectal cancer patients. Methods The carcinoma and paracancerous tissues of 31 patients with rectal adenocarcinoma and no preoperative antitumor therapy were selected as cancer group and paracancer group,respectively.The relative mRNA levels of RUNX3 and EZH2 in the two groups were measured by real-time quantitative reverse transcription-polymerase chain reaction,and the protein levels were determined by immunohistochemical assay.The expression of RUNX3 and EZH2 was compared between cancer tissue and paracancerous tissue.The pre-treatment wax blocks of 26 patients with locally advanced rectal cancer who received 3 cycles of XELOX regimen as neoadjuvant chemotherapy before surgery were selected as the pre-neoadjuvant therapy group,and the postoperative pathological wax blocks were selected as the post-neoadjuvant treatment group.Tumor regression grade(TRG)was determined to evaluate the efficacy of neoadjuvant therapy.Immunohistochemical assay was used to detect the protein levels of RUNX3 and EZH2 in the two groups,and then the relationship between the expression patterns of the two proteins and the efficacy of neoadjuvant chemotherapy was analyzed. Results Compared with paracancerous tissue,the cancer tissue showed down-regulated mRNA level and reduced positive protein expression rate of RUNX3,while up-regulated mRNA level(
Core Binding Factor Alpha 3 Subunit/genetics*
;
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Humans
;
Neoadjuvant Therapy
;
Rectal Neoplasms/drug therapy*
;
Transcription Factor 3
3.Expression and Clinical Significance of EZH2 in Patients with Diffuse Large B Cell Lymphoma Accompanied by HBV Infection.
Yong-Tian ZHANG ; Dan FENG ; Ying WANG ; De-Peng LI ; Zhen-Yu LI ; Ting-Ting QIU ; Kai-Lin XU
Journal of Experimental Hematology 2020;28(3):855-860
OBJECTIVE:
To explore the expression and clinical significance of EZH2 in DLBCL patients accompanied by HBV infection.
METHODS:
The clinicopathological data of 59 patients with DLBCL accompanied by HBV infection in our hospital from February 2015 to October 2017 were analyzed retrospectively. The patients were divided into HBV negative and HBV positive groups by serological testing before surgery. The expression of EZH2 was detected by immumohistochemical staining, and the clinicopathological characteristics and survival were analyzed and compared between these two groups.
RESULTS:
There were 30 patients (50.8%) in the HBV negative group and 29 patients (49.2%)in the HBV positive group. The differences of age, LDH level and IPI score between two groups were statistically significant (P<0.05). The expression of EZH2 in HBV- positive group was significantly higher than that in the HBV- negative group (P<0.05), where the expression of EZH2 correlated with the expression of the BCL-6 (r=0.282, P<0.05), especially in the GCB-DLBCL (r=0.549, P<0.05). PFS was not significantly different between two groups of HBV (P>0.05), while the PFS in the R-CHOP regimen group was higher than that in the CHOP regimen group (P<0.05). COX multivariate analysis showed that both the chemotherapy regimen without R and the increased level of LDH were the risk factors affecting the prognosis of DLBCL patients (P<0.05).
CONCLUSION
EZH2 highly expresses in HBV positive group, suggesting that the significance of EZH2 in DLBCL with HBV infection is worth further explore.
Antineoplastic Combined Chemotherapy Protocols
;
Cyclophosphamide
;
Doxorubicin
;
Enhancer of Zeste Homolog 2 Protein
;
genetics
;
Hepatitis B
;
complications
;
Hepatitis B virus
;
Humans
;
Lymphoma, Large B-Cell, Diffuse
;
complications
;
genetics
;
Prognosis
;
Retrospective Studies
;
Rituximab
;
Vincristine
4.Research Progress of Expression and Clinical Significant of EZH2 in Hematological Malignancies--Review.
Jing-Yu HU ; Yue-Ru JI ; Li LIU
Journal of Experimental Hematology 2020;28(6):2097-2012
Enhancer of zeste homolog 2(EZH2) is a histone methyltransferase which regulate gene expression through epigenetic machinery. The abnormal expression of EZH2 has been described in many cancer types. With in-depth study, it was found that EZH2 is involved in the occurrence and development in many kinds of malignant hematologic disease which may play a dual role of oncogenes and tumor suppressor genes. In recent years, the emergence of EZH2 inhibitors provide a new option for the future treatment of hematological malignancies. In this review, the expression and clinical significance of EZH2 in various of hematological tumors were summarized briefly.
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Hematologic Neoplasms/genetics*
;
Humans
;
Neoplasms
;
Oncogenes
;
Research
5.Expression of MiR101 and EZH2 in Patients with Mantle Cell Lymphoma and Its Clinical Significance.
Yan-Ling LIN ; Zong-Kai ZOU ; Hai-Yan SU ; Yi-Qun HUANG
Journal of Experimental Hematology 2019;27(3):820-826
OBJECTIVE:
To investigate the expression of miR-101 and EZH2 in patients with mantle cell lymphoma(MCL) and to analyze its correlation with clinical prognosis of MCL patients.
METHODS:
RQ-PCR and S-P immunohistochemistry were used to detect the expressions of miR-101 and EZH2 in tissue of MCL patients. CCK-8 was used to assay the effect of miR-100 minics on the proliferation of Jeko-1 and Mino cells; the flow cytometry with Annexin V/PI double staining was used to assay the apoptosis; Western blot was used to assay the effect of miR-101 minics on the expression of EZH2 protein in Jeko-1 and Mino cells.
RESULTS:
Compared with control group, miR-101 lowly expressed, and EZH2 protein highly expressed in MCL group, with very statistically significant difference(P<0.01).There was negative correlation between miR-101 and EZH2 expression(r=-0.638,P<0.05). The expression of miR-101 and EZH2 significantly correlated with B symptoms, International Prognostic Index(IPI) and Ann Arbor stage, respectively. Survival analysis showed that the overall survival(OS) rate of patients with low expression of miR-101 were significantly lower than that of patients with high miR-101 expression (P=0.0014), the OS rate of patients with EZH2 high expression were significantly lower than that of patients with EZH2 low expression (P=0.0093). The miR-100 minics could inhibit the proliferation of Jeko-1 and Mino cells, and increase the apoptotic rate. The expression of EZH2 protein was markedly suppressed by the miR-100 minics.
CONCLUSION
The expression of miR-101 and EZH2 is different in MCL patients with different clinical stage and prognosis. The miR-101 can inhibit the cell proliferation and induce cell apoptosis of mantle cell lymphoma by targeting EZH2.
Apoptosis
;
Cell Proliferation
;
Enhancer of Zeste Homolog 2 Protein
;
genetics
;
Humans
;
Lymphoma, Mantle-Cell
;
genetics
;
MicroRNAs
;
genetics
;
Prognosis
6.mA Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2.
Junchen CHEN ; Yi-Chang ZHANG ; Chunmin HUANG ; Hui SHEN ; Baofa SUN ; Xuejun CHENG ; Yu-Jie ZHANG ; Yun-Gui YANG ; Qiang SHU ; Ying YANG ; Xuekun LI
Genomics, Proteomics & Bioinformatics 2019;17(2):154-168
N-methyladenosine (mA), catalyzed by the methyltransferase complex consisting of Mettl3 and Mettl14, is the most abundant RNA modification in mRNAs and participates in diverse biological processes. However, the roles and precise mechanisms of mA modification in regulating neuronal development and adult neurogenesis remain unclear. Here, we examined the function of Mettl3, the key component of the complex, in neuronal development and adult neurogenesis of mice. We found that the depletion of Mettl3 significantly reduced mA levels in adult neural stem cells (aNSCs) and inhibited the proliferation of aNSCs. Mettl3 depletion not only inhibited neuronal development and skewed the differentiation of aNSCs more toward glial lineage, but also affected the morphological maturation of newborn neurons in the adult brain. mA immunoprecipitation combined with deep sequencing (MeRIP-seq) revealed that mA was predominantly enriched in transcripts related to neurogenesis and neuronal development. Mechanistically, mA was present on the transcripts of histone methyltransferase Ezh2, and its reduction upon Mettl3 knockdown decreased both Ezh2 protein expression and consequent H3K27me3 levels. The defects of neurogenesis and neuronal development induced by Mettl3 depletion could be rescued by Ezh2 overexpression. Collectively, our results uncover a crosstalk between RNA and histone modifications and indicate that Mettl3-mediated mA modification plays an important role in regulating neurogenesis and neuronal development through modulating Ezh2.
Adenosine
;
analogs & derivatives
;
metabolism
;
Adult Stem Cells
;
cytology
;
metabolism
;
Animals
;
Brain
;
metabolism
;
Cell Differentiation
;
genetics
;
Cell Proliferation
;
Enhancer of Zeste Homolog 2 Protein
;
metabolism
;
Gene Expression Regulation
;
Methyltransferases
;
metabolism
;
Mice, Inbred C57BL
;
Neural Stem Cells
;
cytology
;
metabolism
;
Neurogenesis
;
genetics
;
Neurons
;
cytology
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
7.Effect of enhancer of zeste homolog 2 on the expression of glial cell line-derived neurotrophic factor family receptor α-1 in the colon tissue of children with Hirschsprung's disease.
Fan ZHAO ; Chong-Gao ZHOU ; Guang XU ; Ti-Dong MA ; Ren-Peng XIA ; Bi-Xiang LI
Chinese Journal of Contemporary Pediatrics 2019;21(10):1033-1037
OBJECTIVE:
To study the expression levels of glial cell line-derived neurotrophic factor family receptor α-1 (GFRα1) and enhancer of zeste homolog 2 (EZH2) in the intestinal tissue of children with Hirschsprung's disease (HSCR), as well as the role of EZH2 in the regulation of GFRα1 gene expression and the pathogenesis of HSCR.
METHODS:
The samples of colon tissue with spasm from 24 children with HSCR after radical treatment of HSCR were selected as the experimental group, and the samples of necrotized colon tissue from 18 children with neonatal necrotizing enterocolitis after surgical resection were selected as the control group. Real-time PCR and Western blot were used to measure the expression levels of GFRα1 and EZH2 in colon tissue in both groups. Human neuroblastoma SH-SY5Y cells were divided into an EZH2 over-expression group and a negative control group. The cells in the EZH2 over-expression group were transfected with pCMV6-EZH2 plasmid, and those in the negative control group were transfected with pCMV6 plasmid. The expression levels of EZH2 and GFRα1 were measured after transfection.
RESULTS:
Compared with the control group, the experimental group had significant reductions in the mRNA and protein expression levels of GFRα1 and EZH2 in colon tissue (P<0.05), and the protein expression of EZH2 was positively correlated with that of GFRα1 (r=0.606, P=0.002). Compared with the negative control group, the EZH2 over-expression group had significant increases in the expression levels of EZH2 and GFRα1 after SH-SY5Y cells were transfected with EZH2 over-expression plasmid (P<0.05).
CONCLUSIONS
Low expression of EZH2 in the colon tissue of children with HSCR may be one of the causes of inadequate expression of GFRα1 and onset of HSCR.
Child
;
Colon
;
Enhancer of Zeste Homolog 2 Protein
;
genetics
;
Glial Cell Line-Derived Neurotrophic Factor Receptors
;
genetics
;
Hirschsprung Disease
;
genetics
;
Humans
;
Infant, Newborn
;
RNA, Messenger
8.Construction of EZH2 Knockout Animal Model by CRISPR/Cas9 Technology.
Fanrong MENG ; Dan ZHAO ; Qinghua ZHOU ; Zhe LIU
Chinese Journal of Lung Cancer 2018;21(5):358-364
BACKGROUND:
It has been proven that CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system was the modern gene-editing technology through the constitutive expression of nucleases Cas9 in the mammalian, which binds to the specific site in the genome mediated by single-guide RNA (sgRNA) at desired genomic loci. The aim of this study is that the animal model of EZH2 gene knockout was constructed using CRISPR/Cas9 technology.
METHODS:
In this study, we designed two single-guide RNAs targeting the Exon3 and Exon4 of EZH2 gene. Then, their gene-targeting efficiency were detected by SURVEYOR assay. The lentivirus was perfused into the lungs of mice by using a bronchial tube and detected by immunohistochemistry and qRT-PCR.
RESULTS:
The experimental results of NIH-3T3 cells verify that the designed sgEZH2 can efficiently effect the cleavage of target DNA by Cas9 in vitro. The immunohistochemistry and qRT-PCR results showed that the EZH2 expression in experimental group was significantly decreased in the mouse lung tissue.
CONCLUSIONS
The study successfully designed two sgRNA which can play a knock-out EZH2 function. An EZH2 knockout animal model was successfully constructed by CRISPR/Cas9 system, and it will be an effective animal model for studying the functions and mechanisms of EZH2.
Animals
;
CRISPR-Cas Systems
;
Enhancer of Zeste Homolog 2 Protein
;
genetics
;
metabolism
;
Female
;
Gene Knockout Techniques
;
Gene Targeting
;
Humans
;
Lung Neoplasms
;
genetics
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
RNA, Guide
9.Effect of a novel EZH2 inhibitor GSK126 on prostate cancer cells.
Weiren LIN ; Yatian CHEN ; Linghui ZENG ; Rongbiao YING ; Feng ZHU
Journal of Zhejiang University. Medical sciences 2016;45(4):356-363
To investigate the effect of a novel EZH2 inhibitor GSK126 on cell growth, apoptosis and migration of prostate cancer cells.Prostate cancer PC-3 and DU145 cells were treated with GSK126 at different doses. Cell growth was detected by sulforhodamine assay. Cell apoptosis was assayed by Annexin V-/PI kit. Transwell chamber and wound healing assays were conducted to detect cell migration. The mRNA level was detected by quantitative PCR, and protein expression was detected by Western blot analysis.GSK126 showed significant effect on cell growth and apoptosis when the dose was higher than 50 μmol/L. Wound healing assay revealed that scratch space in PC-3 cells was significantly increased in a dose-dependent manner in GSK126-treated groups[(247.2±24.4),(347.2±19.2) and (410.5±18.1) μm in low, medium and high dose (5.0, 20.0, 50.0 μmol/L), respectively] as compared with the control group[(171.3±17.8) μm](all<0.05). Transwell assay showed that migrated PC-3 cells in control group was 322.0±17.9,while those in GSK126-treated groups were 198.3±15.4 (low),82.7±6.2 (medium) and 30.2±4.1 (high), and the differences between the control group and GSK126-treated groups were significant(all<0.05). In addition, GSK126 up-regulated E-cadherin mRNA expression and down-regulated N-cadherin and Vimentin mRNA expression, whereas had no significant effect on Snail, Fibronectin and VEGF-A mRNA expression. The protein expression of E-cadherin was elevated but VEGF-A protein did not change in GSK126-treated groups. Similar results were exhibited in DU145 cell.GSK126 can significantly inhibit cell migration and invasion in prostate cancer PC-3 and DU145 cells, which may be resulted from its effect on epithelial-mesenchymal transition. GSK126 may be used as a potential anti-prostate cancer dug in clinic.
Apoptosis
;
drug effects
;
Cadherins
;
analysis
;
drug effects
;
metabolism
;
Cell Line, Tumor
;
drug effects
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Drug Screening Assays, Antitumor
;
methods
;
Enhancer of Zeste Homolog 2 Protein
;
analysis
;
drug effects
;
metabolism
;
Fibronectins
;
analysis
;
drug effects
;
metabolism
;
Humans
;
Indoles
;
pharmacology
;
Male
;
Prostatic Neoplasms
;
chemistry
;
genetics
;
physiopathology
;
Pyridones
;
pharmacology
;
RNA, Messenger
;
Up-Regulation
;
drug effects
;
Vascular Endothelial Growth Factor A
;
analysis
;
drug effects
;
Vimentin
;
analysis
;
drug effects
;
metabolism
10.miRNA-101 inhibits the expression of the enhancer of zeste homolog 2 in androgen-independent prostate cancer LNCaP cell line.
Jian-xin LIU ; Qi-fa ZHANG ; Chang-hai TIAN ; Yong ZHANG ; Xiao-zhou HAN ; Hao GUO
National Journal of Andrology 2015;21(6):500-503
OBJECTIVETo investigate the effect of miRNA-101 on the expression of the enhancer of zeste homolog 2 (EXH2) in human androgen-independent prostated cancer LNCaP cells.
METHODSWe divided LNCaP cells into a blank control, a negative control, and a miRNA-l01 transfection group, constructed the vector by transfecting synthetic miRNA-101 mimics into the LNCaP cells, and evaluated the efficiency of transfection by fluorescence microscopy. Then we determined the expression level of EZH2 mRNA by qRT-PCR in the three groups of cells and that of the EZH2 protein in the negative control and transfection groups by Western blot.
RESULTSGreen fluorescence signals were observed in over 70% of the LNCaP cells in the transfection group after 24 hours of transfection. At 72 hours, the expression of miRNA-101 was significantly upregulated in the transfected cells (P < 0.01), that of EZH2 mRNA was remarkably lower in the transfection group (0.01 ± 0.10) than in the blank control (0.95 ± 0.40) and negative control (0.86 ± 0.30) groups (both P < 0.01), and that of the EZH2 protein was increased in the negative control but decreased in the transfection group with the extension of culture time.
CONCLUSIONmiRNA-101, with its inhibitory effect on the expression of EZH2 in LNCaP cells, is a potential biotherapeutic for prostate cancer.
Androgens ; Cell Line, Tumor ; Enhancer of Zeste Homolog 2 Protein ; Genetic Vectors ; Humans ; Male ; MicroRNAs ; physiology ; Polycomb Repressive Complex 2 ; genetics ; metabolism ; Prostatic Neoplasms ; metabolism ; RNA, Messenger ; metabolism ; Transfection

Result Analysis
Print
Save
E-mail