1.Potential protective effects of red yeast rice in endothelial function against atherosclerotic cardiovascular disease.
Shu-Jun FENG ; Zhi-Han TANG ; Ying WANG ; Xin-Ying TANG ; Tao-Hua LI ; Wei TANG ; Ze-Min KUANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):50-58
Atherosclerotic cardiovascular disease (ASCVD) is the deadliest disease in the world, with endothelial injury occurring throughout the course of the disease. Therefore, improvement in endothelial function is of essential importance in the prevention of ASCVD. Red yeast rice (RYR), a healthy traditional Chinese food, has a lipid modulation function and also plays a vital role in the improvement of endothelial reactivity and cardiovascular protection; thus, it is significant in the prevention and treatment of ASCVD. This article reviews the molecular mechanisms of RYR and its related products in the improvement of endothelial function in terms of endothelial reactivity, anti-apoptosis of endothelial progenitor cells, oxidative stress alleviation and anti-inflammation.
Apoptosis
;
drug effects
;
Atherosclerosis
;
pathology
;
physiopathology
;
prevention & control
;
Biological Products
;
chemistry
;
pharmacology
;
therapeutic use
;
Cardiovascular Diseases
;
pathology
;
physiopathology
;
prevention & control
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Endothelium, Vascular
;
cytology
;
drug effects
;
physiology
;
Humans
;
Inflammation
;
prevention & control
;
Lipid Metabolism
;
drug effects
;
Oxidative Stress
;
drug effects
2.Microvesicles derived from hypoxia/reoxygenation-treated human umbilical vein endothelial cells impair relaxation of rat thoracic aortic rings.
Shao-Xun WANG ; Qi ZHANG ; Man SHANG ; Su WEI ; Miao LIU ; Yi-Lu WANG ; Meng-Xiao ZHANG ; Yan-Na WU ; Ming-Lin LIU ; Jun-Qiu SONG ; Yan-Xia LIU
Chinese Journal of Applied Physiology 2014;30(6):560-566
OBJECTIVETo investigate the effects of microvesicles (MVs) derived from hypoxia/reoxygenation (H/R)-treated human umbilical vein endothelial cells (HUVECs) on endothelium-dependent relaxation of rat thoracic aortic rings.
METHODSH/R injury model was established to induce HUVECs to release H/R-EMVs. H/R-EMVs from HUVECs were isolated by ultracentrifugation from the conditioned culture medium. H/R-EMVs were characterized using 1 μm latex beads and anti-PE-CD144 by flow cytometry. Thoracic aortic rings of rats were incubated with 2.5, 5, 10, 20 μg/ml H/R-EMVs derived from H/R-treated HUVECs for 4 hours, and their endothelium-dependent relaxation in response to acetylcholine (ACh) or endothelium-independent relaxation in response to sodium nitroprusside (SNP) was recorded in vitro. The nitric oxide (NO) production of ACh-treated thoracic aortic rings of rats was measured using Griess reagent. The expression of endothelial NO synthase (eNOS) and phosphorylated eNOS (p-eNOS, Ser-1177) in the thoracic aortic rings of rats was detected by Western blotting. Furthermore, the levels of SOD and MDA in H/R-EMVs-treated thoracic aortic rings of rats were measured using SOD and MDA kit.
RESULTSH/R-EMVs were induced by H/R-treated HUVECs and isolated by ultracentrifugation. The membrane vesicles (< 1 μm) induced by H/R were CD144 positive. ACh-induced relaxation and NO production of rat thoracic aortic rings were impaired by H/R-EMVs treatment in a concentration-dependent manner (P < 0.05, P < 0.01). The expression of total eNOS (t-eNOS) was not affected by H/R-EMVs. However, the expression of p-eNOS decreased after treated with H/R-EMVs. The activity of SOD decreased and the level of MDA increased in H/R-EMVs treated rat thoracic aortic rings (P < 0.01).
CONCLUSIONACh induced endothelium-dependent relaxation of thoracic aortic rings of rats was impaired by H/R-EMVs in a concentration-dependent manner. The mechanisms included a decrease in NO production, p-eNOS expression and an increase in oxidative stress.
Acetylcholine ; pharmacology ; Animals ; Aorta, Thoracic ; physiology ; Cell Hypoxia ; Endothelium, Vascular ; physiology ; Human Umbilical Vein Endothelial Cells ; cytology ; Humans ; In Vitro Techniques ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; metabolism ; Nitroprusside ; pharmacology ; Oxidative Stress ; Rats
3.Stimulation of endothelial non-neuronal muscarinic receptor attenuates the progression of atherosclerosis via inhibiting endothelial cells activation.
Jing-Hong ZHOU ; Zhi-Yuan PAN ; Yan-Fang ZHANG ; Wen-Yu CUI ; Chao-Liang LONG ; Hai WANG
Chinese Journal of Applied Physiology 2014;30(6):549-559
OBJECTIVETo investigate the effects of non-neuronal muscarinic receptors (NNMR) stimulation on atherosclerosis and endothelial cells activation.
METHODSAtherosclerosis model was established in ApoE-/- mice by a high fat diet for 7 weeks. During the experimental periods, animals were received a low (7 mg/kg/d) or a high (21 mg/kg/d) dose of arecoline by gavage. At the termination of the treatments, serum total cholesterol and NO levels were measured, and the aorta morphology was analyzed by hematoxylin and eosin staining. The gene expression of monocyte chemoattractant protein-1 (MCP-1) and adhesion molecules in the thoracic aortas was determined by RT-PCR, and the MCP-1 protein expression and NF-κB activity were detected by Western blot analysis. NO production, MCP-1 secretion in cultured rat aortic endothelial cells (RAECs), and monocyte-endothelium adhesion assay were also performed after arecoline treatments.
RESULTSArecoline efficiently decreased atherosclerotic plaque areas, increased serum nitric oxide (NO) content, suppressed the mRNA and protein expression of MCP-1, and modulated the IκB-α degradation and P65 phosphorylation in the aortae of ApoE-/- mice. Furthermore, arecoline promoted NO production and suppressed MCP-1 secretion in cultured RAECs after ox-LDL exposure, and either atropine or NG-nitro-L-arginine methylester could abrogate these effects. Arecoline also significantly inhibited the adherence of U937 monocytes to the ox-LDL injured human umbilical vein endothelial cells, which could be abolished by atropine.
CONCLUSIONOur results indicate that arecoline attenuates the progression of atherosclerosis and inhibits endothelial cells activation and adherence by stimulating endothelial NNMR. These effects, at least in part, are due to its modulation on NF-κB activity.
Animals ; Aorta ; cytology ; Apolipoproteins E ; Arecoline ; pharmacology ; Atherosclerosis ; physiopathology ; prevention & control ; Cell Adhesion Molecules ; metabolism ; Chemokine CCL2 ; metabolism ; Cholesterol ; blood ; Disease Progression ; Endothelial Cells ; cytology ; drug effects ; Endothelium, Vascular ; Human Umbilical Vein Endothelial Cells ; cytology ; Humans ; I-kappa B Proteins ; metabolism ; Lipoproteins, LDL ; Mice ; Mice, Knockout ; Monocytes ; cytology ; NF-KappaB Inhibitor alpha ; Nitric Oxide ; blood ; Nitroarginine ; pharmacology ; Rats ; Receptors, Muscarinic ; physiology ; Transcription Factor RelA ; metabolism
4.Negative-pressure wound therapy induces endothelial progenitor cell mobilization in diabetic patients with foot infection or skin defects.
Sang Gyo SEO ; Ji Hyun YEO ; Ji Hye KIM ; Ji Beom KIM ; Tae Joon CHO ; Dong Yeon LEE
Experimental & Molecular Medicine 2013;45(11):e62-
Non healing chronic wounds are difficult to treat in patients with diabetes and can result in severe medical problems for these patients and for society. Negative-pressure wound therapy (NPWT) has been adopted to treat intractable chronic wounds and has been reported to be effective. However, the mechanisms underlying the effects of this treatment have not been elucidated. To assess the vasculogenic effect of NPWT, we evaluated the systemic mobilization of endothelial progenitor cells (EPCs) during NPWT. Twenty-two of 29 consecutive patients who presented at the clinic of Seoul National Universty Hospital between December 2009 and November 2010 who underwent NPWT for diabetic foot infections or skin ulcers were included in this study. Peripheral blood samples were taken before NPWT (pre-NPWT) and 7-14 days after the initiation of NPWT (during-NPWT). Fluorescence-activated cell sorting (FACS) analysis showed that the number of cells in EPC-enriched fractions increased after NPWT, and the numbers of EPC colony forming units (CFUs) significantly increased during NPWT. We believe that NPWT is useful for treating patients with diabetic foot infections and skin ulcers, especially when these conditions are accompanied by peripheral arterial insufficiency. The systemic mobilization of EPCs during NPWT may be a mechanism for healing intractable wounds in diabetic patients with foot infections or skin defects via the formation of increased granulation tissue with numerous small blood vessels.
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Case-Control Studies
;
Child
;
Colony-Forming Units Assay
;
Cytokines/genetics/metabolism
;
Diabetic Foot/*surgery
;
Endothelial Cells/metabolism/*physiology
;
Endothelium, Vascular/cytology
;
Female
;
Humans
;
Male
;
Middle Aged
;
*Negative-Pressure Wound Therapy
;
Stem Cells/metabolism/*physiology
5.Protective effect of insulin-like growth factor-1 on vascular endothelial function in hypercholesterolemia and the underlying mechanism.
Shaokui JI ; Qilin MA ; Xiuju LUO ; Jun PENG
Journal of Central South University(Medical Sciences) 2013;38(1):36-42
OBJECTIVE:
To investigate the relationship between insulin-like growth factor-1 (IGF-1) in the serum and the vascular endothelial function in patients with hypercholesterolemia and the underlying mechanism.
METHODS:
We examined the flow-mediated arterial diastolic function (FMD), the levels of IGF-1, asymmetric dimethylarginine (ADMA), NO, and the activity of nitric oxide synthase (NOS) in the serum from 25 patients with hypercholesterolemia and from healthy controls. An endothelial cell injury model was established by incubation of the human umbical vein endothelial cells (HUVECs) with oxidized low-density lipoprotein (ox-LDL) for 24 hours. Cells were treated with IGF-1 30 min before ox-LDL treatment. The levels of ADMA, NOS, and NO in the cell supernatant, the activity of dimethylarginine dimethylamine hydrolase (DDAH) in the cell lysate were measured. Beta-galactosidase staining was used to assess the degree of endothelial cell senescence by calculating the senescence rate of cells.
RESULTS:
Compared with the control group, the FMD, the levels of IGF-1 and NO, and the activity of NOS in the serum from patients with hypercholesterolemia decreased significantly accompanied with a dramatic increase at ADMA level. Multiple linear regression analysis showed that the change in IGF-1 was positively correlated with FMD while the change in ADMA was negatively correlated with FMD. Compared with the control group, ox-LDL treatments significantly decreased the activities of DDAH and NOS, and the level of NO, accompanied with an increase in ADMA. Betagalactosidase staining showed that the senescence rate of cells increased in the ox-LDL group. The effect of ox-LDL on HUVECs was significantly attenuated at the presence of IGF-1.
CONCLUSION
The decrease in IGF-1 in the peripheral blood may contribute to vascular endothelial dysfunction in patients with hypercholesterolemia. IGF-1 can protect HUVECs against ox-LDL-induced senescence, which is likely involved in the regulation of DDAH/ADMA pathway.
Adult
;
Arginine
;
analogs & derivatives
;
blood
;
Case-Control Studies
;
Cells, Cultured
;
Endothelium, Vascular
;
physiology
;
Female
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
Humans
;
Hypercholesterolemia
;
blood
;
physiopathology
;
Insulin-Like Growth Factor I
;
metabolism
;
physiology
;
Lipoproteins, LDL
;
pharmacology
;
Male
;
Middle Aged
;
Nitric Oxide
;
blood
;
Protective Agents
;
metabolism
;
Vasodilation
;
physiology
6.Endothelial Dysfunction and Increased Carotid Intima-Media Thickness in the Patients with Slow Coronary Flow.
Hyun Ju YOON ; Myung Ho JEONG ; Sook Hee CHO ; Kye Hun KIM ; Min Goo LEE ; Keun Ho PARK ; Doo Sun SIM ; Nam Sik YOON ; Young Joon HONG ; Ju Han KIM ; Youngkeun AHN ; Jeong Gwan CHO ; Jong Chun PARK ; Jung Chaee KANG
Journal of Korean Medical Science 2012;27(6):614-618
Flow mediated brachial dilatation (FMD) and carotid intima-media thickness (IMT) have been a surrogate for early atherosclerosis. Slow coronary flow in a normal coronary angiogram is not a rare condition, but its pathogenesis remains unclear. A total of 85 patients with angina were evaluated of their brachial artery FMD, carotid IMT and conventional coronary angiography. Coronary flow was quantified using the corrected thrombosis in myocardial infarction (TIMI) frame count method. Group I was a control with normal coronary angiography (n = 41, 56.1 +/- 8.0 yr) and group II was no significant coronary stenosis with slow flow (n = 44, 56.3 +/- 10.0 yr). Diabetes was rare but dyslipidemia and family history were frequent in group II. Heart rate was higher in group II than in group I. White blood cells, especially monocytes and homocysteine were higher in group II. The FMD was significantly lower in group II than in group I. Elevated heart rate, dyslipidemia and low FMD were independently related with slow coronary flow in regression analysis. Therefore, endothelial dysfunction may be an earlier vascular phenomenon than increased carotid IMT in the patients with slow coronary flow.
Aged
;
Angina, Unstable/complications/physiopathology/ultrasonography
;
Brachial Artery/physiopathology
;
*Carotid Intima-Media Thickness
;
Coronary Angiography
;
Coronary Circulation/*physiology
;
Dyslipidemias/complications
;
Endothelium, Vascular/*physiopathology
;
Female
;
Heart Rate
;
Homocysteine/metabolism
;
Humans
;
Leukocyte Count
;
Male
;
Middle Aged
;
Monocytes/cytology
;
ROC Curve
;
Regression Analysis
;
Risk Factors
7.Morphine Postconditioning Attenuates ICAM-1 Expression on Endothelial Cells.
Too Jae MIN ; Joong il KIM ; Jae Hwan KIM ; Kyung Hee NOH ; Tae Woo KIM ; Woon Young KIM ; Yoon Sook LEE ; Young Cheol PARK
Journal of Korean Medical Science 2011;26(2):290-296
The purpose of this study is to determine 1) whether morphine postconditiong (MPostC) can attenuate the intercellular adhesion molecules-1 (ICAM-1) expression after reoxygenation injury and 2) the subtype(s) of the opioid receptors (ORs) that are involved with MPostC. Human umbilical vein endothelial cells (HUVECs) were subjected to 6 hr anoxia followed by 12 hr reoxygenation. Three morphine concentrations (0.3, 3, 30 microM) were used to evaluate the protective effect of MPostC. We also investigated blockading the OR subtypes' effects on MPostC by using three antagonists (a micro-OR antagonist naloxone, a kappa-OR antagonist nor-binaltorphimine, and a delta-OR antagonist naltrindole) and the inhibitor of protein kinase C (PKC) chelerythrine. As results, the ICAM-1 expression was significantly reduced in the MPostC (3, 30 microM) groups compared to the control group at 1, 6, 9, and 12 hours reoxygenation time. As a consequence, neutrophil adhesion was also decreased after MPostC. These effects were abolished by coadministering chelerythrine, nor-binaltorphimine or naltrindole, but not with naloxone. In conclusion, it is assumed that MPostC could attenuate the expression of ICAM-1 on endothelial cells during reoxygenation via the kappa and delta-OR (opioid receptor)-specific pathway, and this also involves a PKC-dependent pathway.
Animals
;
Benzophenanthridines/pharmacology
;
Endothelial Cells/cytology/*drug effects/*metabolism
;
Endothelium, Vascular/cytology
;
Humans
;
Intercellular Adhesion Molecule-1/genetics/*metabolism
;
Morphine/*pharmacology
;
Naloxone/pharmacology
;
Naltrexone/analogs & derivatives/pharmacology
;
Narcotic Antagonists/pharmacology
;
Narcotics/*pharmacology
;
Protein Isoforms/metabolism
;
Protein Kinase C/antagonists & inhibitors/metabolism
;
Receptors, Opioid/metabolism
;
Reperfusion Injury/*metabolism
;
Signal Transduction/physiology
;
Umbilical Veins/cytology
8.Erythropoietin receptor positive circulating progenitor cells and endothelial progenitor cells in patients with different stages of diabetic retinopathy.
Liu-mei HU ; Xia LEI ; Bo MA ; Yu ZHANG ; Yan YAN ; Ya-lan WU ; Ge-zhi XU ; Wen YE ; Ling WANG ; Guo-xu XU ; Guo-tong XU ; Li WEI-YE
Chinese Medical Sciences Journal 2011;26(2):69-76
OBJECTIVETo investigate the possible involvement of erythr opoietin (EPO)/erythropoietin receptor (EPOR) system in neovascularization and vascular regeneration in diabetic retinopathy (DR).
METHODSEPOR positive circulating progenitor cells (CPCs: CD34(+)) and endothelial progenitor cells (EPCs: CD34(+)KDR(+)) were assessed by flow cytometry in type 2 diabetic patients with different stages of DR. The cohort consisted of age- and sex-matched control patients with out diabetes ( n=7),non-proliferative DR (NPDR, n=7),non-proliferative DR (PDR, n=8), and PDR complicated with diabetic nephr opathy (PDR-DN, n=7).
RESULTSThe numbers of EPOR(+) CPCs and EPOR(+) EPCs were reduced remarkably in NPDR compared with the control group (both Pü0.01), whereas rebounded in PDR and PDR-DN groups in varyingdegrees. Similar changes were observed in respect of the proportion of EPOR(+)CPCs in CPCs (NPDR vs. control, Pü0.01) and that of EPOR(+) EPCs in EPCs (NPDR vs. control, Pü0.05).
CONCLUSIONExogenous EPO, mediated via the EPO/EPOR system of EPCs, may alleviate the impaired vascular regeneration in NPDR, whereas it might aggravate retinal neovascularization in PDR due to a rebound of EPOR(+)EPCs associated with ischemia.
Aged ; Cell Count ; Diabetes Mellitus, Type 2 ; complications ; Diabetic Retinopathy ; pathology ; Endothelium, Vascular ; cytology ; Erythropoietin ; blood ; Female ; Humans ; Male ; Middle Aged ; Receptors, Erythropoietin ; analysis ; Stem Cells ; physiology
9.Differences in nitric oxide release and endothelium-derived hyperpolarizing factor-mediated hyperpolarization between human radial artery and saphenous vein.
Zhi-gang LIU ; Xiao-cheng LIU ; Guo-wei HE
Chinese Journal of Surgery 2011;49(12):1128-1131
OBJECTIVETo compare the differences in nitric oxide (NO) release and endothelium-derived hyperpolarizing factor (EDHF)-mediated hyperpolarization between human radial artery (RA) and saphenous vein (SV) through direct measurement of NO and membrane potential.
METHODSRA (n = 8), SV (n = 23), and surgical prepared SV (PV, n = 9, dilatation with normal saline solution at a pressure of 100 - 600 mmHg, 1 mmHg = 0.133 kPa) segments (5 mm long) taken from patients undergoing coronary artery bypass grafting were placed in an organ chamber. The NO-sensitive electrode and intracellular glass microelectrode was used to directly measure the NO release and the membrane potential changes in response to acetylcholine (ACh) and bradykinin (BK) before and after incubation with NG-nitro-L-arginine, indomethacin, and oxyhemoglobin.
RESULTSThe basal release of NO in RA [(11.9 ± 1.8) nmol/L] was significantly greater than that in SV [(9.9 ± 2.8) nmol/L, P = 0.041]. BK-induced NO release in RA was lower than that in SV [for BK 10(-7) mol/L: (25.8 ± 3.6) nmol/L vs. (43.7 ± 8.2) nmol/L, P = 0.006]. Both basal and ACh- or BK-induced NO release in PV were significantly reduced [basal release: PV (3.4 ± 1.4) nmol/L; P = 0.006 vs. RA; P = 0.002 vs. SV; stimulated release: for ACh 10(-5) mol/L: PV (4.8 ± 3.2) nmol/L; vs. RA (28.6 ± 7.9) nmol/L, P = 0.005; vs. SV (27.4 ± 3.7) nmol/L, P = 0.003; for BK 10(-7) mol/L: PV (7.0 ± 3.6) nmol/L; vs. RA (25.8 ± 3.6) nmol/L, P = 0.016; vs. SV (43.7 ± 8.2) nmol/L, P = 0.004]. EDHF-mediated hyperpolarization was greater in RA than that in SV [ACh 10(-5) mol/L: (-9.7 ± 1.9) mV vs. (-4.5 ± 1.1) mV, n = 17, P = 0.002].
CONCLUSIONSRA is superior to SV in terms of NO basal release and EDHF-mediated endothelial function. Surgical preparation and pressure dilatation may severely impair the NO-mediated endothelial function of SV, which may contribute to the poor long-term patency of SV coronary graft.
Biological Factors ; metabolism ; Endothelial Cells ; metabolism ; physiology ; Endothelium, Vascular ; cytology ; metabolism ; Female ; Humans ; Male ; Membrane Potentials ; physiology ; Middle Aged ; Nitric Oxide ; metabolism ; Radial Artery ; cytology ; Saphenous Vein ; cytology
10.Effects of simvastatin on vasa vasorum and aortic endothelial function in rats.
Jun WU ; Yun XIAO ; Wei WANG ; Dong-feng LU ; Zhao-chu HE ; Ming-sheng CHEN
Journal of Southern Medical University 2010;30(2):275-277
OBJECTIVETo investigate the effect of hyperlipidemia on vasa vasorum and vascular endothelial growth factor (VEGF) and study the role of vasa vasorum in arteriosclerosis.
METHODSThirty SD rats were randomized into normal control, hyperlipidemic and simvastatin treatment groups (n=10). In simvastatin group, hyperlipidemia was induced by a 4-week administration of atherogenic diet followed by a 16-week treatment with simvastatin at the daily dose of 10 mg/kg, and the rats in hyperlipidemic rats received no treatment. The changes in the aorta and vasa vasorum were examined, and serum lipid concentration and VEGF and NO levels were measured.
RESULTSCompared with the control group, the hyperlipidemic rats showed significantly thickened intima and media aorta and increased vasa vasorum density with lowered NO level, but VEGF underwent no significant changes. Simvastatin treatment significantly reduced the thickness of the intima and media aorta and increased vasa vasorum density in comparison with those in hyperlipidemic group. Simvastatin treatment also significantly increased VEGF and NO levels and a positive correlation was noted between their levels.
CONCLUSIONHyperlipidemia can impair the vasa vasorum and aortic endothelial function. Simvastatin increases VEGF and NO and promotes neogenesis of the vasa vasorum for the benefit of the aortic function.
Animals ; Aorta ; cytology ; Arteriosclerosis ; pathology ; physiopathology ; Endothelium, Vascular ; physiology ; Hyperlipidemias ; drug therapy ; pathology ; physiopathology ; Hypolipidemic Agents ; pharmacology ; Male ; Nitric Oxide ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Simvastatin ; pharmacology ; Vasa Vasorum ; cytology ; Vascular Endothelial Growth Factor A ; metabolism

Result Analysis
Print
Save
E-mail