1.Antihypertensive effect and mechanism of Dendrobium officinale flos on high-blood pressure rats induced by high glucose and high fat compound alcohol.
Kai-Lun LIANG ; Ping FANG ; Qiu-Qiu SHI ; Jie SU ; Bo LI ; Su-Hong CHEN ; Gui-Yuan LV
China Journal of Chinese Materia Medica 2018;43(1):147-153
This study aimed to investigate the antihypertensive effect and possible mechanism of Dendrobium officinale flos on hypertensive rats induced by high glucose and high fat compound alcohol. The hypertensive models were successfully made by high-glucose and high-fat diet, with gradient drinking for 4 weeks, and then divided into model control group, valsartan (5.7 mg·kg⁻¹) positive control group and D. officinale flos groups (3,1 g·kg⁻¹). After 6 weeks of treatment, the blood pressure of rats was measured regularly. After the last administration, endothelin-1 (ET-1), thromboxane B₂ (TXB₂), prostacyclin (PGI₂) and nitric oxide (NO) were tested. Endothelial nitric oxide synthase (eNOS) expression and lesion status in thoracic aorta were detected. The vascular endothelium dependent dilation of the thoracic aorta was detected by the isolated vascular loop tension test. The results showed that D. officinale flos could significantly reduce systolic blood pressure and mean arterial pressure in hypertensive rats, inhibit the thickening of thoracic aorta and the loss of endothelial cells, reduce plasma content of ET-1 and TXB₂, and increase the content of PGI₂ and NO. After long-term administration, vascular endothelium dependent dilation of the thoracic aorta was significantly increased, and could be blocked by the eNOS inhibitor (L-NAME) and increase the expression of eNOS. Therefore, D. officinale flos has an obvious antihypertensive effect on high glucose and high fat compound alcohol-induced hypertensive rats. Its mechanism may be correlated with the improvement of vascular diastolic function by protecting vascular endothelial cells, and finally resist hypertension.
Animals
;
Antihypertensive Agents
;
pharmacology
;
Blood Pressure
;
Dendrobium
;
chemistry
;
Diet, High-Fat
;
Drugs, Chinese Herbal
;
pharmacology
;
Endothelin-1
;
blood
;
Endothelium, Vascular
;
drug effects
;
Epoprostenol
;
blood
;
Glucose
;
Hypertension
;
chemically induced
;
drug therapy
;
Nitric Oxide
;
blood
;
Nitric Oxide Synthase Type III
;
metabolism
;
Rats
;
T-Box Domain Proteins
;
blood
;
Vasodilation
2.Comparison of agonists-induced contraction between main and the third-order branches of pulmonary arteries in rats.
Qiu-Hong HUANG ; Yun-Ping MU ; Fu-Rong YAN ; Jie-Ling ZHU ; Xiao-Ru LIU ; Mo-Jun LIN ;
Acta Physiologica Sinica 2017;69(1):1-10
This study was designed to observe the differences between main pulmonary arteries and the third-order branches of pulmonary arteries in the contractile response to phenylephrine (Phen), endothelin-1 (ET-1) and potassium chloride (KCl). The vascular tension changes of main and the third-order branches of pulmonary arteries induced by KCl, ET-1 and Phen were recorded by traditional vascular tone detection methods and microvascular ring technique, respectively. The results showed that Phen could cause a significant contraction in main pulmonary arteries, but did not induce apparent contraction in the third-order branches of pulmonary arteries. Compared with main pulmonary arteries, ET-1 contracted the third-order branches of pulmonary arteries with reduced maximal response value and PDvalue. In comparison with the main pulmonary arteries, contraction caused by KCl was enhanced in the third-order branches of pulmonary arteries. The results suggest that the vascular reactivity of main and the third-order branches of pulmonary arteries is different and it is important to study the vascular function of small branches of pulmonary arteries. This study could provide an important experimental basis for the further study on vascular function of small branches of pulmonary arteries and the functional changes in pulmonary hypertension.
Animals
;
Endothelin-1
;
pharmacology
;
Male
;
Phenylephrine
;
pharmacology
;
Potassium Chloride
;
pharmacology
;
Pulmonary Artery
;
drug effects
;
Rats
;
Vasoconstriction
3.Protective effect of peperphentonamine injection through the otocyst against gentamicin- induced cochlear damage in guinea pigs.
Bo-Bo LI ; Jian WU ; Jing CHEN ; Hao CHEN ; Yong-He LI
Journal of Southern Medical University 2016;36(4):557-561
OBJECTIVETo explore the relationship of gentamicin-induced cochlear damage with autophagy-related protein LC3, beclin1, Na(+-)K(+-)2Cl(-) cotransporter (NKCC1) mRNA and endothelin-1 (ET-1), and investigate the protective mechanism of PPTA against gentamicin-induced cochlear damage.
METHODSSixty guinea pigs were randomly divided into control group (with saline and artificial perilymph injections), model group (with gentamicin and artificial perilymph injections), concurrent treatment group (with gentamicin and PPTA injections), model control group (with artificial perilymph injection 7 days after gentamicin injection) and delayed treatment group (with PPTA injection 7 days after gentamicin injection). Saline and gentamicin (160 mg/kg) were injected intraperitoneally, and artificial perilymph and PPTA were injected into the otocysts on a daily basis for 7 consecutive days. Hearing impairment of the guinea pigs was analyzed with ABR, and the protein expressions of beclin1 and LC3 in cochlear tissue were tested. The expression of NKCC1 mRNA was detected with RT-PCR, and the expression of ET-1 was detected immunohistochemically.
RESULTSThe ABR thresholds in the model group and model control group were similar (P>0.05) , but significantly higher than those in the other 3 groups (P<0.05); the threshold was significantly lower in concurrent treatment group than in delayed treatment group (P<0.05). Compared with those in the other 4 groups, the expressions of LC3 II, beclin1, and NKCC1 mRNA were significantly increased in the model group (P<0.05); and those in delayed treatment group were significantly lower than those in the model control group (P<0.05). The expressions of ET-1 in the Corti organ, striavascularis and spiral ganglion were significantly higher in the model group but significantly lower in the control group than those in the other 4 groups; ET-1 expression was significantly lower in delayed treatment group than in the model control group.
CONCLUSIONPPTA offers protection against gantamicin-induced cochlear damage in guinea pigs by inhibiting cell autophagy and suppressing of NKCC1 and ET-1 expressions. Early intervention with PPTA produces better therapeutic effect, suggesting that gantamicin causes irreversible injury of the auditory cells.
3,4-Methylenedioxyamphetamine ; analogs & derivatives ; pharmacology ; Animals ; Apoptosis Regulatory Proteins ; metabolism ; Beclin-1 ; Cochlea ; drug effects ; Endothelin-1 ; metabolism ; Gentamicins ; adverse effects ; Guinea Pigs ; Hearing Loss ; chemically induced ; prevention & control ; Microtubule-Associated Proteins ; metabolism ; Solute Carrier Family 12, Member 2 ; metabolism
4.Effect of Magnesium Sulfate, Nifedipine Tablet Combined Salvia Injection on ET-1/NO, TXA2/PGI2 and Hemorheology of Preeclampsia Patients.
Xiao-ying ZHENG ; Jing YAO ; Jia-mei ZHU ; Mei LI ; Shu-qiong QIU ; Zhao-xia ZHU ; Ming ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(8):962-965
OBJECTIVETo observe the effect of magnesium sulfate, Nifedipine Tablet (NT) combined Salvia Injection (SI) on endothelin-1 (ET-1), nitric oxide (NO), thromboxane A2(TXA2), prostacyclin I2(PG2), and hemorheology of preeclampsia patients.
METHODSTotally 704 preeclampsia patients were randomly assigned to the treatment group and the control group, 352 cases in each group. All patients were treated with magnesium sulfate combined NT (on the first day: slow intravenous injection of magnesium sulfate 5 g + intravenous dripping of magnesium sulfate injection 10 g + oral administration of NT 30 mg; on the second and third day, intravenous dripping of magnesium sulfate injection 10 g + oral administration of NT 30 mg), while those in the treatment group were dripped with SI additionally at 20 mL per day for 3 consecutive days. Before and after treatment plasma levels of endothelin-1 (ET-1), nitric oxide (NO), TXA2, PGi2, and hemorheology indicators [such as high blood viscosity (HBV), low blood viscosity (LBV), plasma viscosity (PV), erythrocyte rigidity index (ERI), fibrinogen (FIB)] of two groups were detected.
RESULTSCompared with the same group before treatment, serum levels of ET-1, TXA2, HBV, LBV, PV, ERI, and FIB decreased in the two groups after treatment (P <0. 05), but levels of NO and PG2 increased (P <0. 05). Compared with the control group in the same period, levels of ET-1, TXA2, HBV, LBV, PV, ERI, and FIB decreased in the treatment group after treatment (P <0. 05), but levels of NO and PGI2 increased (P <0. 05).
CONCLUSIONMagnesium sulfate, NT combined SI could effectively regulate the balance of ET-1/NO and TXA2/PGI2, and improve hemorheology of preeclampsia patients.
Drug Therapy, Combination ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Endothelin-1 ; metabolism ; Epoprostenol ; metabolism ; Female ; Hemorheology ; Humans ; Injections ; Magnesium Sulfate ; administration & dosage ; pharmacology ; therapeutic use ; Nifedipine ; administration & dosage ; pharmacology ; therapeutic use ; Nitric Oxide ; metabolism ; Pre-Eclampsia ; drug therapy ; Pregnancy ; Salvia ; Tablets ; Thromboxane A2 ; metabolism
5.Suppressive effect of hydrogen sulfide donor on endothelin-1 production in aorta of atherosclerotic rats.
Wei LI ; Junbao DU ; Hongfang JIN ; Email: JINHONGFANG51@126.COM.
Chinese Journal of Pediatrics 2015;53(6):448-452
OBJECTIVETo examine the effect of H2S donor, sodium hydrosulfide (NaHS), on ET-1 level in plasma and aorta in rats with atherosclerosis (AS).
METHODThirty male rats, weighting 200-220 g, were randomly divided into AS, AS+NaHS and control groups, n = 10 in each group.Rats were given a single dose of vitamin D3 (700 000 U/kg) in the first three days and fed with a high-cholesterol diet for 8 weeks to induce AS. Rats in AS+NaHS group were intraperitoneally injected with an H2S donor NaHS, at a dose of 56 µmol/(kg·d) for 8 weeks. At the end of the experiment for 8 weeks, all the rats were sacrificed. The plasma was collected and the aorta and coronary tissues were isolated. The atherosclerotic lesions in both aorta and coronary arteries were detected using oil red O method. H2S concentration in plasma was determined with sulfide-sensitive electrode method. ET-1 levels in plasma and aorta were calculated by radioimmunoassay kit and the localization of ET-1 in the aorta was detected by immunohistochemistry. Plasma nitric oxide synthase (NOS), endothelial NOS (eNOS), inducible NOS (iNOS) were detected with colorimetry.
RESULTAS plaque area in root of aorta of rats in AS group, AS+NaHS group and control group were (11.6±3.3)%, (1.6±1.1)%, (0.0±0.1)% respectively. The difference in AS plaque area in root of aorta among the three groups was statistically significant (F=97.675, P < 0.05). AS plaque area in coronary artery of rats in AS group, AS+NaHS group and control group were (21.4±5.7)%, (4.8±2.5)%, (0.0±0.0)% respectively. The difference in AS plaque area in coronary artery among the three groups was statistically significant (F=97.519, P < 0.05). Plasma H2S level in rats of AS group ((22.0±3.1) µmol/L) was significantly lower than that of control group ((27.9±1.0) µmol/L) and AS+NaHS group ((33.3±6.2) µmol/L, all P < 0.05). Compared with control group ((70.0±10.7) ng/L), plasma ET-1 in rats of AS group ((89.6±14.2) ng/L) and AS+NaHS group ((93.1±15.5) ng/L, P both < 0.05) were increased. However, there was no significant difference in plasma ET-1 content in rats between AS+NaHS group and AS group (P > 0.05). Compared with control group ((3.8±1.2) ng/g), ET-1 content in aorta in rats of AS group ((11.9±4.9) ng/g) and AS+NaHS group ((8.2±2.5) ng/g, both P < 0.05) were increased, and ET-1 content in aorta in rats of AS+NaHS group was decreased compared with AS group (P < 0.05). Immunochemistry results showed that ET expression in cytoplasm in aortic endothelial cells in rats of AS group was strengthened, while ET expression in rats of control group and AS+NaHS group was weak. NOS activity of rats in control group, AS group and AS+NaHS group was (25.4±5.6), (51.8±10.0) and (27.6±6.5) U/ml, eNOS activity (15.3±6.2), (4.5±2.7) and (8.7±3.9) U/ml, and iNOS activity (9.9±4.0), (47.3±10.7) and (19.0±5.2) U/ml, respectively.Differences among the three groups were statistically significant (NOS activity: F=37.231, P < 0.05, eNOS activity: F=14.600, P < 0.05, and iNOS activity: F=72.131, P < 0.05).
CONCLUSIONH2S donor NaHS reduced the AS plaque in AS rats. The mechanisms might involve the protective effect of H2S on the vascular endothelial cell, decreasing ET-1 production in aortal endothelium of atherosclerotic rats.
Animals ; Aorta ; metabolism ; pathology ; Atherosclerosis ; metabolism ; pathology ; Coronary Vessels ; pathology ; Disease Models, Animal ; Endothelin-1 ; blood ; metabolism ; Hydrogen Sulfide ; pharmacology ; Male ; Nitric Oxide Synthase Type II ; metabolism ; Nitric Oxide Synthase Type III ; metabolism ; Random Allocation ; Rats ; Sulfides ; pharmacology
6.Effect of Tripterygium glycosides on expression of hypoxia inducible factor-1α and endothelin-1 in kidney of diabetic rats.
Wei-Dong CHEN ; Bao-Chao CHANG ; Yan ZHANG ; Ping YANG ; Lei LIU
Journal of Southern Medical University 2015;35(4):499-505
OBJECTIVETo observe the effect of Tripterygium glycosides (TG) on the expression of hypoxia-inducible factor-1α and endothelin-1 in the kidney of diabetic rats and explore the possible mechanism underlying the protective effect of TG against diabetic nephropathy.
METHODSSixty 8-week-old male SD rats were randomly divided into normal control group (n=10) and streptozotocin-induced diabetes mellitus (DM) model group (n=50). The diabetic model rats were then randomly divided into DM group, low-dose (8 mg/kg) and high-dose (16 mg/kg) TG treatment groups, and Irbesartan (50 mg/kg) treatment group. After 8 weeks, the levels of blood glucose (BG), 24-h urine protein (24 h Upro), serum creatinine (Scr) and blood urea nitrogen (BUN) were measured. The pathological changes in the renal tissues were examined by optical microscopy, and the mean glomerular area (MGA) and mean glomerular volume (MGV) were measured with pathological image analysis. Immunohistochemical and Western blotting were used to detect the expression of HIF-1α and ET-1 protein in the renal tissue, and their mRNA expressions were detected using real-time fluorescence quantitative PCR.
RESULTSHIF-1α and ET-1 expression increased in the kidney of diabetic rats. Compared with the diabetic model rats, the rats receiving TG and Irbesartan treatment showed decreased levels of Scr, BUN, 24h Upro, MGA and MGV, improved renal histopathology, and reduced expression of HIF-1α and ET-1 mRNA and protein in the renal tissue. These changes were more obvious in high-dose TG treatment group. Correlation analysis showed that the expression of HIF-1α was positively correlated with that of ET-1, and they were both positively correlated with kidney weight index (KW/BW), 24 h Upro, MGA, and MGV.
CONCLUSIONHIF-1α and ET-1 are overexpressed in the kidney of diabetic rats. TG can improve kidney damage in diabetic rats and delay the development of diabetic nephropathy by inhibiting the HIF-1α and ET-1 expression.
Animals ; Biphenyl Compounds ; pharmacology ; Blood Glucose ; Blood Urea Nitrogen ; Creatinine ; blood ; Diabetes Mellitus, Experimental ; metabolism ; Endothelin-1 ; metabolism ; Glycosides ; pharmacology ; Hypoxia-Inducible Factor 1, alpha Subunit ; metabolism ; Kidney ; drug effects ; metabolism ; Male ; Rats ; Rats, Sprague-Dawley ; Tetrazoles ; pharmacology ; Tripterygium ; chemistry
7.The changes of vascular active substances in pulmonary embolism rats and a comparative study of anticoagulant drugs.
Ying ZHANG ; Wei FENG ; Cun-zi YAN ; Ai-mu-xi-ka-mai-er Ai-he-mai-ti XI ; Yong LIN ; Hui LU
Chinese Journal of Applied Physiology 2015;31(2):178-185
OBJECTIVETo establish the rat model of acute pulmonary embolism, and study the changes of vascular active substances in pulmonary embolism rats, and investigate the interventive effect of anticoagulant drugs on vascular active substances.
METHODSOne hundred and twenty-eight rats were randomly divided into four groups: control group, model group, low-molecular-weight heparin and warfarin treated group and rivaroxaban-treated group (n = 32 in each group). The method of autologous thrombosis was used to establish the animal model of acute pulmonary embolism. The animals were treated with saline or different anticoagulant drugs. The physiological and biochemical parameters were detected at different time points after embolization. The rats were killed after embolism of 24 h, 3 d, 5 d or 1 week respectively and the pathologic samples of lung tissues were collected to analyze the pulmonary pathological changes in different groups.
RESULTSRats in embolization group after blood clots injection showed shortness of breath, oral cyanosis; quicken heart rates and other symptoms. All embolization groups had pulmonary hypertension, the levels of type B natriuretic peptide (BNP) were increased significantly. The ratio of endothelin-1 (ET-1)/NO and thromboxane (TXB2) and prostacyclin (6-k-PGFla) were abnormal. After treated with effective anticoagulant drugs, the levels of BNP, ET-1, NO, TXB2 and 6-k-PGF1a were tended to the normal levels in the control group. The pulmonary hypertensions were gradually decreased. The efficacy of rivaroxaban on pulmonary embolism was the same as that of the low molecular weight heparin or warfarin.
CONCLUSIONAnticoagulation therapy can effectively improve endothelial function after pulmonary embolism, reduce pulmonary hypertension, and revise the increased BNP levels to normal levels. The efficacy of rivaroxaban is not inferior to that of low molecular weight heparin and warfarin.
Animals ; Anticoagulants ; pharmacology ; Disease Models, Animal ; Endothelin-1 ; metabolism ; Heparin, Low-Molecular-Weight ; pharmacology ; Hypertension, Pulmonary ; drug therapy ; metabolism ; Lung ; pathology ; Morpholines ; pharmacology ; Pulmonary Embolism ; drug therapy ; metabolism ; Rats ; Rivaroxaban ; Thiophenes ; pharmacology ; Warfarin ; pharmacology
8.Protective Effects of Tetramethylpyrazine on Cerebrovascular Regulations in Rats with Chronic Alcoholic Encephalopathy.
Hui LI ; Xue YANG ; Wei SHI ; Zhao MA ; Guang Kun FENG ; Yan Ling YIN ; Yan Xia FAN ; Jie JIANG
Biomedical and Environmental Sciences 2015;28(9):691-695
Recent studies showed that pathology of alcoholic encephalopathy was associated with cerebral vascular damage. TMP (tetramethyl- pyrazine) is widely used in the treatment of cerebrovascular diseases, however, it has not been reported whether TMP can relieve alcohol-induced cerebral vascular damages. The study was performed to investigate the learning and memory, cerebrovascular pathological changes and the expressions of vascular endothelial growth factor (VEGF) and serum levelsofendothelin-1 (ET-1) in the rat model of chronic alcoholic encephalopathy, and explore the effects of TMP intervention on alcoholic encephalopathy. In the present study, the rat model of chronic alcoholic encephalopathy was established by the gavage administration of alcohol; the learning and memory ability was tested by Morris water maze; the expression of VEGF was measured by RT-PCR and Western blot; and the serum levels of ET-1 was measured by radioimmunoassay. We found that alcohol intoxication impaired learning and memory, induced VEGF overexpression and increased ET 1 concentrations. TMP intervention improved learning abilities, increased the VEGF expression and reduced ET-1 level. These results indicate that TMP exhibits therapeutic effects on chronic alcoholic encephalopathy.
Alcohol-Induced Disorders, Nervous System
;
complications
;
drug therapy
;
physiopathology
;
Animals
;
Cerebrovascular Circulation
;
drug effects
;
Disease Models, Animal
;
Endothelin-1
;
blood
;
Learning
;
drug effects
;
Male
;
Memory
;
drug effects
;
Pyrazines
;
pharmacology
;
therapeutic use
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Vascular Endothelial Growth Factor A
;
analysis
;
Vasodilator Agents
;
pharmacology
;
therapeutic use
9.2-Bromoethylamine protects vascular endothelium by inhibiting SSAO activity in diabetic rats.
Zhen-Hua WANG ; Chao-Sheng LI ; Da-Hao YANG ; Zheng-Rong XU ; Jun-Hong CAI ; Jun CHEN
Acta Physiologica Sinica 2014;66(4):476-482
The purpose of this study was to investigate the change of aortic semicarbazide-sensitive amine oxidase (SSAO) activity in diabetic rats and examine the effect of 2-bromoethylamine (2-BEA) on SSAO activity and vascular endothelium in diabetic rats. SSAO was prepared from rat aorta. For assessment of the inhibitory effect, the enzymes were preincubated in the presence of different concentrations of 2-BEA before the addition of benzylamine in vitro. Type 1 diabetic rat model was induced by a single intraperitoneal injection of streptozotocin (STZ). Sprague Dawley (SD) rats were randomly divided into normal control group (NC), diabetic model group (DM), 2-BEA 5 mg/kg group, 2-BEA 20 mg/kg group (n = 10 in each group). 2-BEA was administered daily via intraperitoneal injection for 8 weeks. At the end of 8 weeks, blood sample was collected from the abdominal aorta. Plasma nitric oxide (NO) was determined by nitrate reductase method. Plasma endothelin-1 (ET-1) was determined by radioimmunoassay. Aorta SSAO was determined by high performance liquid chromatography. The aorta was prepared to observe morphological changes and ultramicroscopic structures. The results were as follows: Compared with NC group, aortic SSAO activity and the plasma ET-1 were significantly increased (P < 0.01), and plasma NO was significantly decreased (P < 0.01) in DM group. 2-BEA decreased plasma ET-1 and elevated plasma NO by inhibiting aortic SSAO activity in diabetic rats (P < 0.01), and 2-BEA 20 mg/kg group was more significant than 2-BEA 5 mg/kg group (P < 0.05). Endothelial injury of 2-BEA group rats was less serious than DM group. These results suggest that 2-BEA protect aortic endothelium by inhibiting aortic SSAO activity.
Amine Oxidase (Copper-Containing)
;
metabolism
;
Animals
;
Aorta, Abdominal
;
enzymology
;
Diabetes Mellitus, Experimental
;
enzymology
;
Endothelin-1
;
blood
;
Endothelium, Vascular
;
drug effects
;
Ethylamines
;
pharmacology
;
Protective Agents
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
10.The estrogen-like protective effect of ginsenoside Rb3 on oxidative stress and dysfunction of endothelial cells induced by oxidized low-density lipoprotein.
Yu-ting PAN ; Chun-yu GUO ; Xiao-juan MA ; Jing-shang WANG ; Xin LIU ; Ming-yue SUN ; Miao ZHANG ; Hui-jun YIN
Acta Pharmaceutica Sinica 2014;49(10):1406-1412
Ginsenoside Rb3 (GRb3) is one of the main components in plasma of Panax quinquefolius Saponin of stem and leaf (PQS), which can be into human plasma. Previous studies have found PQS has estrogen-like vascular protective effects. In the present study, we investigated the estrogen-like protective effect of GRb3 on oxidative stress and dysfunction of endothelial cells induced by oxidized low-density lipoprotein. The activities of SOD, NOS and the contents of MDA in the cell lysate were examined by enzyme method or spectrophotometry. The NO and ET-1 concentrations in the cell culture supernatant were measured by ELISA method. The iNOS and eNOS mRNA expression were measured by real time RT-PCR, while the phosphorylation levels of Akt was measured by Western blotting. The results showed that GRb3 could enhance the activity of SOD, reduce the content of MDA, increase the level of NOS, NO, ET-1 and iNOS mRNA expression while decrease the eNOS mRNA expression and the phosphorylation level of Akt. These effects were blocked by estrogen receptor antagonist ICI182780. GRb3 can play a role in protecting vascular endothelial cells by estrogen receptors, the protective mechanism is similar to 17-β estrodiol.
Cells, Cultured
;
Endothelial Cells
;
drug effects
;
Endothelin-1
;
metabolism
;
Estradiol
;
analogs & derivatives
;
Estrogens
;
pharmacology
;
Ginsenosides
;
pharmacology
;
Humans
;
Lipoproteins, LDL
;
adverse effects
;
Nitric Oxide Synthase Type II
;
metabolism
;
Nitric Oxide Synthase Type III
;
metabolism
;
Oxidative Stress
;
Panax
;
chemistry
;
Phosphorylation
;
Saponins
;
pharmacology
;
Superoxide Dismutase
;
metabolism

Result Analysis
Print
Save
E-mail