1.Inhibitory effect of andrographolide on angiogenesis induced by the supernatant from cultured tumor cells.
Xiaolan GUO ; Maozhou ZHAO ; Yuyin LIN ; Wensheng CHEN ; Shiwen WANG ; Jianwei DAI
Journal of Central South University(Medical Sciences) 2018;43(8):821-825
		                        		
		                        			
		                        			To determine the effect of andrographolide (Andro) on angiogenesis of human umbilical vein endothelial cells (HUVECs).
 Methods: HUVECs were treated with different concentrations of Andro and the cell viability was detected with Cell Counting Kit-8 (CCK-8). HUVECs were treated with half lethal dose (IC50) of Andro. Matrigel was used to make capillary formation of HUVECs and the effect of Andro on capillary formation was evaluated by calculating the percentage of capillary formation. Moreover, the effects of Andro and the supernatant from cultured A549 tumor cells on capillary formation were evaluated by calculating the percentage of capillary formation. The effect of Andro on the expression of matrix metalloproteinase-9 (MMP-9) was determined with Western blot.
 Results: The cell viability of HUVECs decreased with the increase of Andro concentrations. IC50 was 20 μmol/L. The capillary formation of HUVECs was inhibited when treated with 20 μmol/L Andro for 24 hours. Moreover, Andro was able to antagonize the promotion of the capillary formation induced by the supernatant from cultured tumor cells. Andro could suppress the expression of MMP-9 and antagonize the capillary formation.
 Conclusion: Andro inhibits the capillary formation of HUVECs and can antagonize the promotion of angiogenesis induced by the supernatant from cultured tumor cells.
		                        		
		                        		
		                        		
		                        			Capillaries
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			Collagen
		                        			;
		                        		
		                        			Culture Media
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Drug Combinations
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Laminin
		                        			;
		                        		
		                        			Matrix Metalloproteinase 9
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Neovascularization, Pathologic
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Proteoglycans
		                        			;
		                        		
		                        			Tumor Cells, Cultured
		                        			
		                        		
		                        	
2.Role of axl in preeclamptic EPCs functions.
Ying HU ; Xiao-Ping LIU ; Xiao-Xia LIU ; Yan-Fang ZHENG ; Wei-Fang LIU ; Ming-Lian LUO ; Hui GAO ; Ying ZHAO ; Li ZOU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):395-401
		                        		
		                        			
		                        			Axl encodes the tyrosine-protein kinase receptor, participating in the proliferation and migration of many cells. This study examined the role of Axl in functions of endothelial progenitor cells (EPCs). Axl was detected by RT-PCR and Western blotting in both placentas and EPCs from normal pregnancy and preeclampsia patients. The Axl inhibitor, BMS777-607, was used to inhibit the Axl signalling pathway in EPCs. Cell proliferation, differentiation, migration and adhesion were measured by CCK-8 assay, cell differentiation assay, Transwell assay, and cell adhesion assay, respectively. Results showed the expression levels of Axl mRNA and protein were significantly higher in both placentas and EPCs from preeclampsia patients than from normal pregnancy (P<0.05). After treatment with BMS777-607, proliferation, differentiation, migration and adhesion capability of EPCs were all significantly decreased. Our study suggests Axl may play a role in the function of EPCs, thereby involving in the pathogenesis of preeclampsia.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aminopyridines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			Case-Control Studies
		                        			;
		                        		
		                        			Cell Adhesion
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fetal Blood
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Gestational Age
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Placenta
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Pre-Eclampsia
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Primary Cell Culture
		                        			;
		                        		
		                        			Protein Kinase Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Proto-Oncogene Proteins
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pyridones
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptor Protein-Tyrosine Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Stem Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
3.Pro-angiogenic activity of notoginsenoside R1 in human umbilical vein endothelial cells in vitro and in a chemical-induced blood vessel loss model of zebrafish in vivo.
Bin-Rui YANG ; Si-Jia HONG ; Simon Ming-Yuen LEE ; Wei-Hong CONG ; Jian-Bo WAN ; Zhe-Rui ZHANG ; Qing-Wen ZHANG ; Yi ZHANG ; Yi-Tao WANG ; Zhi-Xiu LIN
Chinese journal of integrative medicine 2016;22(6):420-429
OBJECTIVEThis study aimed at investigating whether notoginsenoside R1 (R1), a unique saponin found in Panax notoginseng could promote angiogenic activity on human umbilical vein endothelial cells (HUVECs) and elucidate their potential molecular mechanisms. In addition, vascular restorative activities of R1 was assessed in a chemically-induced blood vessel loss model in zebrafish.
METHODSThe in vitro angiogenic effect of R1 was compared with other previously reported angiogenic saponins Rg1 and Re. The HUVECs proliferation in the presence of R1 was determined by cell proliferation kit II (XTT) assay. R1, Rg1 and Re-induced HUVECs invasion across polycarbonate membrane was stained with Hoechst-33342 and quantified microscopically. Tube formation assay using matrigelcoated wells was performed to evaluate the pro-angiogenic actions of R1. In order to understand the mechanism underlying the pro-angiogenic effect, various pathway inhibitors such as SU5416, wortmannin (wort) or L-Nω-nitro- L-arginine methyl ester hydrochloride (L-NAME), SH-6 were used to probe the possible involvement of signaling pathway in the R1 mediated HUVECs proliferation. In in vivo assays, zebrafish embryos at 21 hpf were pre-treated with vascular endothelial growth factor (VEGF) receptor kinase inhibitor II (VRI) for 3 h only and subsequently post-treated with R1 for 48 h, respectively. The intersegmental vessels (ISVs) in zebrafish were assessed for the restorative effect of R1 on defective blood vessels.
RESULTSR1 could stimulate the proliferation of HUVECs. In the chemoinvasion assay, R1 significantly increased the number of cross-membrane HUVECs. In addition, R1 markedly enhanced the tube formation ability of HUVECs. The proliferative effects of these saponins on HUVECs were effectively blocked by the addition of SU5416 (a VEGF-KDR/Flk-1 inhibitor). Similarly, pre-treatment with wort [a phosphatidylinositol 3-kinase (PI3K)-kinase inhibitor], L-NAME [an endothelial nitric oxide synthase (eNOS) inhibitor] or SH-6 (an Akt pathway inhibitor) significantly abrogated the R1 induced proliferation of HUVECs. In chemicallyinduced blood vessel loss model in zebrafish, R1 significantly rescue the damaged ISVs.
CONCLUSIONR1, similar to Rg1 and Re, had been showed pro-angiogenic action, possibly via the activation of the VEGF-KDR/Flk-1 and PI3K-Akt-eNOS signaling pathways. Our findings also shed light on intriguing pro-angiogenic effect of R1 under deficient angiogenesis condition in a pharmacologic-induced blood vessels loss model in zebrafish. The present study in vivo and in vitro provided scientific evidence to explain the ethnomedical use of Panax notoginseng in the treatment of cardiovascular diseases, traumatic injuries and wound healing.
Animals ; Blood Vessels ; pathology ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Collagen ; pharmacology ; Disease Models, Animal ; Drug Combinations ; Ginsenosides ; chemistry ; pharmacology ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; enzymology ; physiology ; Humans ; Laminin ; pharmacology ; Neovascularization, Physiologic ; drug effects ; Phosphatidylinositol 3-Kinases ; metabolism ; Protein Kinase Inhibitors ; pharmacology ; Proteoglycans ; pharmacology ; Proto-Oncogene Proteins c-akt ; metabolism ; Vascular Endothelial Growth Factor Receptor-2 ; metabolism ; Zebrafish
4.Salvianolic Acid B Down-regulates Matrix Metalloproteinase-9 Activity and Expression in Tumor Necrosis Factor-α-induced Human Coronary Artery Endothelial Cells.
Le MA ; Yun-Qian GUAN ; Zhong-Dong DU
Chinese Medical Journal 2015;128(19):2658-2663
BACKGROUNDSalvianolic acid B (Sal B) is a bioactive water-soluble compound of Salviae miltiorrhizae, a traditional herbal medicine that has been used clinically for the treatment of cardiovascular diseases. This study sought to evaluate the effect of Sal B on matrix metalloproteinase-9 (MMP-9) and on the underlying mechanisms in tumor necrosis factor-α± (TNF-α±)-activated human coronary artery endothelial cells (HCAECs), a cell model of Kawasaki disease.
METHODSHCAECs were pretreated with 1-10 αμmol/L of Sal B, and then stimulated by TNF-α± at different time points. The protein expression and activity of MMP-9 were determined by Western blot assay and gelatin zymogram assay, respectively. Nuclear factor-κB (NF-κB) activation was detected with immunofluorescence, electrophoretic mobility shift assay, and Western blot assay. Protein expression levels of mitogen-activated protein kinase (c-Jun N-terminal kinase [JNK], extra-cellular signal-regulated kinase [ERK], and p38) were determined by Western blot assay.
RESULTSAfter HCAECs were exposed to TNF-α±, 1-10 αμmol/L Sal B significantly inhibited TNF-α±-induced MMP-9 expression and activity. Furthermore, Sal B significantly decreased IκBα± phosphorylation and p65 nuclear translocation in HCAECs stimulated with TNF-α± for 30 min. In addition, Sal B decreased the phosphorylation of JNK and ERK1/2 proteins in cells treated with TNF-α± for 10 min.
CONCLUSIONSThe data suggested that Sal B suppressed TNF-α±-induced MMP-9 expression and activity by blocking the activation of NF-κB, JNK, and ERK1/2 signaling pathways.
Benzofurans ; pharmacology ; Blotting, Western ; Cell Line ; Cell Survival ; drug effects ; Coronary Vessels ; cytology ; Endothelial Cells ; drug effects ; enzymology ; Humans ; Matrix Metalloproteinase 9 ; metabolism ; NF-kappa B ; metabolism ; Tumor Necrosis Factor-alpha ; pharmacology
5.Xiaokening stimulates endothelial nitric oxide release in diabetic rats.
Hong LIU ; Lei LIU ; Qunli WEI ; Jie CUI ; Changdong YAN ; Xin WANG ; Yongping WU
Singapore medical journal 2015;56(7):401-406
INTRODUCTIONDiabetes mellitus induces microangiopathic changes that lead to endothelial dysfunction. This study investigated the effect of Xiaokening, a type of Chinese compound medicine, on the mesenteric arteriolar endothelial cell function of diabetic rats and its underlying mechanism.
METHODSDiabetes mellitus was induced in rat models via intraperitoneal injection of 60 mg/kg streptozotocin and observed over three weeks. Mesenteric arterioles, which were isolated in a cannulated and pressurised state, were incubated with intravascular injections of 1, 3 or 5 g/L Xiaokening for 24, 48 or 72 hours. The effects of Xiaokening on the release of nitric oxide (NO) on the mesenteric arterioles were detected under shear stress of 1, 10 and 20 dyn/cm(2). Biochemical methods were used to determine the activities of superoxide dismutase (SOD) and xanthine oxidase (XO). The expressions of endothelial NO synthase (eNOS), SOD and XO in the mesenteric arterioles were assessed using Western blot.
RESULTSCompared to normal rat arterioles, less NO was released in the mesenteric arterioles of diabetic rats. Xiaokening was found to have a concentration- and time-dependent effect on NO release; when the shear stress was increased, there was a gradual increase in the release of NO. Compared to normal arterioles, the expression of eNOS in the mesenteric arterioles of diabetic rats was lower. Incubation with Xiaokening increased SOD activity and expression, and decreased XO activity and expression in the mesenteric arterioles of the diabetic rats.
CONCLUSIONXiaokening was able to significantly increase NO release and improve the endothelial function of mesenteric arterioles through antioxidative mechanisms.
Animals ; Antioxidants ; chemistry ; Arterioles ; enzymology ; Diabetes Mellitus, Experimental ; drug therapy ; Dose-Response Relationship, Drug ; Drugs, Chinese Herbal ; pharmacology ; Endothelial Cells ; drug effects ; Injections, Intraperitoneal ; Male ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; metabolism ; Oxygen ; metabolism ; Rats ; Rats, Sprague-Dawley ; Streptozocin ; Superoxide Dismutase ; metabolism ; Xanthine Oxidase ; metabolism
6.Time-effect relationship of extracts from ginseng, notoginseng and chuanxiong on vascular endothelial cells senescence.
Chinese journal of integrative medicine 2014;20(10):758-763
OBJECTIVETo observe the time-effect relation of extracts from ginseng, notoginseng and chuanxiong on angiotensin II (Ang II)-induced senescence of vascular endothelial cells and explore the feature of Chinese medicine against vascular diseases.
METHODSHuman umbilical vein endothelial cells (HUVECs) cultured in vitro were stimulated with 10(-6) mol/L AngII to induce cell senescence, which were divided into 4 groups, the blank control group, the Ang II model group, the extracts group and the telmisartan group. The β-gal was used to identify senescence of cells, the cell counting kit-8 method was applied to assess the cell viability, the cell function was examined with the level of endothelial nitric oxide synthase (eNOS) and the flow cytometry was used for analyzing the cell cycle changes.
RESULTSCompared with the control cells, the cells positive for β-gal staining was significantly increased in the Ang II model group, and showed cell cycle arrest at G0/G1 phase with decreased S and G2/M phase cell percentage, eNOS expression and cell viability (P<0.05). The extracts and telmisartan treatment of Ang II-induced cells resulted in decreased β-gal positive cells with a reduction in G0/G1 phase cells and an increasing in S, G2/M phase cells and eNOS expression (P<0.05). At 24 h, the extracts were more effective than telmisartan (P<0.05); while telmisartan was more effective at 48 h (P<0.05).
CONCLUSIONExtracts from ginseng, notoginseng and chuanxiong can delay Ang II-induced aging of HUVECs and may play an important role in early senescence.
Cell Cycle Checkpoints ; drug effects ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Cellular Senescence ; drug effects ; Down-Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; enzymology ; Humans ; Nitric Oxide Synthase Type III ; metabolism ; Panax notoginseng ; chemistry ; Plant Extracts ; pharmacology ; Time Factors ; beta-Galactosidase ; metabolism
7.Tanshinone II a protects against lipopolysaccharides-induced endothelial cell injury via Rho/Rho kinase pathway.
Wei LI ; Wei SUN ; Chuan-hua YANG ; Hong-zhen HU ; Yue-hua JIANG
Chinese journal of integrative medicine 2014;20(3):216-223
OBJECTIVETo test whether tanshinone II A (Tan II A), a highly valued herb derivative to treat vascular diseases in Chinese medicine, could protect endothelial cells from bacterial endotoxin (lipopolysaccharides, LPS)-induced endothelial injury.
METHODSEndothelial cell injury was induced by treating human umbilical vein endothelial cells (HUVECs) with 0.2 μg/mL LPS for 24 h. Y27632 and valsartan were used as positive controls. The effects of tanshinone II A on the LPS-induced cell viability and apoptosis rate of HUVECs were tested by flow cytometry, cell migration by transwell, adhesion by a 96-well plate pre-coated with vitronectin and cytoskeleton reorganization by immunofluorescence assay. Rho/Rho kinase (ROCK) pathway-associated gene and protein expression were examined by microarray assay; quantitative real-time polymerase chain reaction and Western blotting were used to confirm the changes observed by microarray.
RESULTSTan II A improved cell viability, suppressed apoptosis and protected cells from LPS-induced reductions in cell migration and adhesion at a comparable magnitude to that of Y27632 and valsartan. Tan II A, Y27632 and valsartan also normalized LPS-induced actomyosin contraction and vinculin protein aggregation. A microarray assay revealed increased levels of fibronectin, integrin A5 (ITG A5), Ras homolog gene family member A (RhoA), myosin light chain phosphatase, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K, or PIP2 in Western blotting), focal adhesion kinase, vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in the damaged HUVECs, which were attenuated to different degrees by Tan II A, Y27632 and valsartan.
CONCLUSIONTan II A exerted a strong protective effect on HUVECs, and the mechanism was caused, at least in part, by a blockade in the Rho/ROCK pathway, presumably through the down-regulation of ITG A5.
Apoptosis ; drug effects ; Cell Adhesion ; drug effects ; Cell Movement ; drug effects ; Cell Shape ; drug effects ; Cell Survival ; drug effects ; Cytoprotection ; drug effects ; Cytoskeleton ; drug effects ; metabolism ; Diterpenes, Abietane ; chemistry ; pharmacology ; Down-Regulation ; drug effects ; genetics ; Human Umbilical Vein Endothelial Cells ; drug effects ; enzymology ; pathology ; Humans ; Integrin alphaV ; metabolism ; Lipopolysaccharides ; Myosin Light Chains ; metabolism ; Oligonucleotide Array Sequence Analysis ; Phosphatidylinositol 4,5-Diphosphate ; metabolism ; Protective Agents ; pharmacology ; Signal Transduction ; drug effects ; Up-Regulation ; drug effects ; genetics ; Vinculin ; metabolism ; rho GTP-Binding Proteins ; metabolism ; rho-Associated Kinases ; metabolism
8.The effects of intergrin-linked kinase on angiogenesis in hypertrophic scar.
Ren-Kun WANG ; Ye-Yang LI ; Gang LI ; Wei-Hua LIN ; Jing-En SUN ; Zhen-Wen LIANG ; Xiao-Hong WANG
Chinese Journal of Plastic Surgery 2013;29(6):413-412
OBJECTIVETo investigate the effects and regulatory mechanism of ILK on angiogenesis in hypertrophic scar.
METHODSThe human scar microvascular endothelial cells (HSMECs) were isolated from 6 patients' hypertrophic scar in vitro. The HSMECs with good condition in 2nd to 4th generation were selected as experimental objectives. (1) HSMECs were divided into the blank control group (treated with routine culture), negative control group (treated with only Lipofectamine 2000), LY294002 group (incubated with 50 nmol/L LY294002), ILK siRNA group (incubated with 20 nmol/L ILK siRNA). RT-PCR and Western Blot were used to detect the expression of ILK mRNA and its protein after transfecion for 48 h. (2) The digested HSMECs of four groups were resuspended with DMEM without serum and then seeded onto the upper compartment of transwell insert which contained complete medium in its lower compartment. The cell migration experiment was stopped in 10 h and then the migrated cells were counted to analyze the effects of different interventions on the migration ability of HSMECs. (3) The thawed ECMatrix was put into each well of pre-colled 48-well tissue culture plate, and then the plate was put into the incubator at 37 degrees C to make it to become gel. The HSMECs of four groups were seeded onto the surface of the ECMatrix gel and were put into incubator. Eight random view-fields per well should be valued by the sheet of pattern recognition about angiogenesis after 8 hours to evaluate the ability of angiogenesis in vitro between four groups.
RESULTS(1) The expression of ILK mRNA (ILK mRNA = 0.829 +/- 0.109, t = 13.151, P = 0.006) and protein (ILK protein = 0.096 +/- 0.049, t = 36.656, P = 0.000) were both inhibited obviously in ILK siRNA group compared with the blank control group (ILK mRNA = 0.829 +/- 0.109, ILK protein = 1). And, the expression of ILK in LY294002 group was slightly lower than that of black control group, but there was no statistical difference. (2) The number of migrated cells in ILK siRNA group (88.111 +/- 3.079) and LY294002 group (138. 667 +/- 2.404) were respectively lower than that in blank control group (322.333 +/- 3.712, P < 0. 05) in 10th hour. (3) Compared to blank control group (4.333 +/- 0.191), the ability of angiogenesis in vitro decreased significantly ILK siRNA group (2.625 +/- 0.125) and LY294002 group (3.125 +/- 0.250), in which, the vascular network structures were not formed perfectly in 8th hour (P < 0.05).
CONCLUSIONSThe ability of HSMECs' migration and angiogenesis in vitro are inhibited significantly when the expression of ILK is down-regulated. It reveals that ILK may play an role in the regulation of scar angiogenesis.
Cell Movement ; Cell Proliferation ; Chromones ; pharmacology ; Cicatrix, Hypertrophic ; enzymology ; pathology ; Endothelial Cells ; cytology ; drug effects ; Humans ; Lipids ; pharmacology ; Morpholines ; pharmacology ; Neovascularization, Pathologic ; etiology ; pathology ; Protein-Serine-Threonine Kinases ; genetics ; physiology ; RNA, Messenger ; analysis ; RNA, Small Interfering ; metabolism
9.Advanced glycation end products inhibit glucose-6-phosphate dehydrogenase activity and expression in human umbilical vein endothelial cells.
Acta Physiologica Sinica 2012;64(6):646-650
		                        		
		                        			
		                        			Increased formation of advanced glycation end-products (AGEs) is occurred in hyperglyceamia and diabetes, leading to oxidative stress and progression of diabetic vascular diseases. Glucose-6-phosphate dehydrogenase (G6PD), the principal source of NADPH, serves as an antioxidant enzyme to modulate the redox milieu. Deficiency of G6PD activity is associated with increased endothelial cell oxidative stress. Current study is designed to investigate the effects of AGEs on G6PD activity and expression in human umbilical vein endothelial cells. Treatment of AGE-modified bovine serum albumin (AGE-BSA, 100 µg/mL, 24 h), but not native BSA, to human umbilical vein endothelial cells increased ROS generation by (48.89 ± 5.28)%. G6PD activity was decreased by AGE-BSA treatment by (61.25 ± 11.2)%. The expression of G6PD at mRNA and protein levels was also decreased by AGE-BSA treatment by (27.92 ± 6.73)% and (23.72 ± 2.44)%, respectively. These results suggest that AGEs could result in G6PD deficiency in human umbilical vein endothelial cells by inhibiting the expression of G6PD at mRNA and protein levels and G6PD activity.
		                        		
		                        		
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Glucosephosphate Dehydrogenase
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Glycation End Products, Advanced
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Serum Albumin, Bovine
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
10.Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells.
Xiao-Bin WANG ; Li ZHU ; Jun HUANG ; Yi-Gang YIN ; Xiang-Qing KONG ; Qi-Fei RONG ; Ai-Wu SHI ; Ke-Jiang CAO
Chinese Medical Journal 2011;124(24):4310-4315
BACKGROUNDPrevious studies have shown that resveratrol increases endothelial progenitor cell (EPC) numbers and functional activity. Increased EPC numbers and activity are associated with the inhibition of EPC senescence. In this study, we investigated the effect of resveratrol on the senescence of EPCs, leading to potentiation of cellular function.
METHODSEPCs were isolated from human peripheral blood and identified immunocytochemically. EPCs were incubated with resveratrol (1, 10, and 50 µmol/L) or control for specified times. After in vitro cultivation, acidic β-galactosidase staining revealed the extent of senescence in the cells. To gain further insight into the underlying mechanism of the effect of resveratrol, we measured telomerase activity using a polymerase chain reaction (PCR)-enzyme-linked immunosorbent assay (ELISA) technique. Furthermore, we measured the expression of human telomerase reverse transcriptase (hTERT) and the phosphorylation of Akt by immunoblotting.
RESULTSResveratrol dose-dependently inhibited the onset of EPC senescence in culture. Resveratrol also significantly increased telomerase activity. Interestingly, quantitative real-time PCR analysis demonstrated that resveratrol dose-dependently increased the expression of the catalytic subunit, hTERT, an effect that was significantly inhibited by pharmacological phosphatidylinositol 3-kinase (PI3-K) blockers (wortmannin). The expression of hTERT is regulated by the PI3-K/Akt pathway; therefore, we examined the effect of resveratrol on Akt activity in EPCs. Immunoblotting analysis revealed that resveratrol led to dose-dependent phosphorylation and activation of Akt in EPCs.
CONCLUSIONResveratrol delayed EPCs senescence in vitro, which may be dependent on telomerase activation.
Cells, Cultured ; Cellular Senescence ; drug effects ; Endothelial Cells ; cytology ; drug effects ; enzymology ; Humans ; Stem Cells ; cytology ; drug effects ; enzymology ; Stilbenes ; toxicity ; Telomerase ; metabolism
            
Result Analysis
Print
Save
E-mail