1.Effects of Pearl Hydrolysate on Hepatic Sinusoidal Endothelial Cell Viability and Capillarization in Liver Fibrosis.
Yue PENG ; Miao YANG ; Jiang LIN ; Tiejian ZHAO ; Peng LIU ; Qian-Yu LIU ; Wei-Qian GUO
Acta Academiae Medicinae Sinicae 2023;45(2):185-192
Objective To study the effect and mechanism of pearl hydrolysate on hepatic sinusoidal capillarization in liver fibrosis. Methods Hepatic sinusoidal endothelial cells (HSEC) and hepatic stellate cells (HSC-LX2) were incubated with Hepu pearl hydrolysate.The proliferation of HSEC and HSC-LX2 was examined by MTT colorimetry.The cell cycle and apoptosis of HSC-LX2 were measured by flow cytometry.The changes of the microstructures such as fenestra and basement membrane of HSEC were observed by transmission electron microscopy. Results The intervention with leptin increased the viability of HSC-LX2 (P=0.041),decreased the viability of HSEC (P=0.004),and caused capillarization signs such as decreased number and diameter of fenestrae and formation of continuous basement membrane.The treatment with pearl hydrolysate at different doses increased and expanded the fenestrae of HSEC (low dose:P=0.020;medium dose:P=0.028;high dose:P=0.032),disintegrated the extracellular basement membrane of HSEC (low dose:P=0.020;medium dose:P=0.028;high dose:P=0.032),decreased the viability of HSC-LX2 (low dose:P=0.018;medium dose:P=0.013;high dose:P=0.009),and induced the apoptosis of HSC-LX2 (low dose:P=0.012;medium dose:P=0.006;high dose:P=0.005).Pearl hydrolysate exerted therapeutic effect on capillarization in a dose-dependent manner (low dose:P=0.020;medium dose:P=0.028;high dose:P=0.032).Moreover,high-dose pearl hydrolysate showed stronger effect on capillarization of hepatic sinuses than colchicine (P=0.034) and salvianolic acid B (P=0.038). Conclusion Hepu pearl hydrolysate can increase the viability of HSEC,restore the area of fenestrae,disintegrate the basement membrane,and decrease the viability and induce the apoptosis of HSC-LX2,demonstrating significant pharmacological effects on the capillarization of HSEC and HSC-LX2.
Humans
;
Endothelial Cells/metabolism*
;
Liver Cirrhosis
;
Liver/pathology*
2.Resolving the lineage relationship between malignant cells and vascular cells in glioblastomas.
Fangyu WANG ; Xuan LIU ; Shaowen LI ; Chen ZHAO ; Yumei SUN ; Kuan TIAN ; Junbao WANG ; Wei LI ; Lichao XU ; Jing JING ; Juan WANG ; Sylvia M EVANS ; Zhiqiang LI ; Ying LIU ; Yan ZHOU
Protein & Cell 2023;14(2):105-122
Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells (ECs), to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs. Lineage-tracing and transplantation studies demonstrated that, although blood vessels in GBM brains underwent drastic remodeling, evidence of trans-differentiation of GBM cells into vascular cells was barely detected. Intriguingly, GBM cells could promiscuously express markers for mural cells during gliomagenesis. Furthermore, single-cell RNA sequencing showed that patterns of copy number variations (CNVs) of mural cells and ECs were distinct from those of GBM cells, indicating discrete origins of GBM cells and vascular components. Importantly, single-cell CNV analysis of human GBM specimens also suggested that GBM cells and vascular cells are likely separate lineages. Rather than expansion owing to trans-differentiation, vascular cell expanded by proliferation during tumorigenesis. Therefore, cross-lineage trans-differentiation of GBM cells is very unlikely to occur during gliomagenesis. Our findings advance understanding of cell lineage dynamics during gliomagenesis, and have implications for targeted treatment of GBMs.
Mice
;
Animals
;
Humans
;
Glioblastoma/pathology*
;
Endothelial Cells/pathology*
;
DNA Copy Number Variations
;
Brain/metabolism*
;
Brain Neoplasms/pathology*
3.S-propargyl-cysteine delays the progression of atherosclerosis and increases eNOS phosphorylation in endothelial cells.
Zhi-Ming LI ; Ping LI ; Lei ZHU ; Yu-Wen ZHANG ; Yi-Chun ZHU ; He WANG ; Bo YU ; Ming-Jie WANG
Acta Physiologica Sinica 2023;75(3):317-327
The present study aimed to investigate the protective effect of S-propargyl-cysteine (SPRC) on atherosclerosis progression in mice. A mouse model of vulnerable atherosclerotic plaque was created in ApoE-/- mice by carotid artery tandem stenosis (TS) combined with a Western diet. Macrophotography, lipid profiles, and inflammatory markers were measured to evaluate the antiatherosclerotic effects of SPRC compared to atorvastatin as a control. Histopathological analysis was performed to assess the plaque stability. To explore the protective mechanism of SPRC, human umbilical vein endothelial cells (HUVECs) were cultured in vitro and challenged with oxidized low-density lipoprotein (ox-LDL). Cell viability was determined with a Cell Counting Kit-8 (CCK-8). Endothelial nitric oxide synthase (eNOS) phosphorylation and mRNA expression were detected by Western blot and RT-qPCR respectively. The results showed that the lesion area quantified by en face photographs of the aortic arch and carotid artery was significantly less, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were reduced, plaque collagen content was increased and matrix metalloproteinase-9 (MMP-9) was decreased in 80 mg/kg per day SPRC-treated mice compared with model mice. These findings support the role of SPRC in plaque stabilization. In vitro studies revealed that 100 μmol/L SPRC increased the cell viability and the phosphorylation level of eNOS after ox-LDL challenge. These results suggest that SPRC delays the progression of atherosclerosis and enhances plaque stability. The protective effect may be at least partially related to the increased phosphorylation of eNOS in endothelial cells.
Animals
;
Humans
;
Mice
;
Atherosclerosis
;
Cholesterol/metabolism*
;
Cysteine/pharmacology*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Lipoproteins, LDL/pharmacology*
;
Nitric Oxide Synthase Type III/metabolism*
;
Phosphorylation
;
Plaque, Atherosclerotic/pathology*
4.Research advances on interleukin-6 in hypertrophic scar formation.
Zu Han CHEN ; Bin YU ; Qi Fa YE ; Yan Feng WANG
Chinese Journal of Burns 2022;38(9):874-877
Hypertrophic scar is a pathological repair result of excessive accumulation of extracellular matrix after skin damage, which affects the appearance and function of patients with varying degrees. The degree of scar formation is directly related to the strength of inflammatory reaction during wound healing, and excessive or prolonged inflammatory response increases the incidence of hypertrophic scars. Interleukin-6 (IL-6) is a pleiotropic cytokine that is involved in regulating the fibrotic network composed of fibroblasts, macrophages, keratinocytes, and vascular endothelial cells, and is closely related to the formation of hypertrophic scars. This article reviews the role of IL-6 and its signaling pathway in hypertrophic scar formation.
Cicatrix, Hypertrophic/pathology*
;
Endothelial Cells/metabolism*
;
Fibroblasts/metabolism*
;
Humans
;
Interleukin-6
;
Skin/pathology*
;
Wound Healing/physiology*
5.Bear bile powder attenuates senecionine-induced hepatic sinusoidal obstruction syndrome in mice.
Kai-Yuan JIANG ; Yi ZHANG ; Xuan-Ling YE ; Fen XIONG ; Yan CHEN ; Xia-Li JIA ; Yi-Xin ZHANG ; Li YANG ; Ai-Zhen XIONG ; Zheng-Tao WANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):270-281
Hepatic sinusoidal obstruction syndrome (HSOS) via exposure to pyrrolizidine alkaloids (PAs) is with high mortality and there is no effective treatment in clinics. Bear bile powder (BBP) is a famous traditional animal drug for curing a variety of hepatobiliary diseases such as cholestasis, inflammation, and fibrosis. Here, we aim to evaluate the protective effect of BBP against HSOS induced by senecionine, a highly hepatotoxic PA compound. Our results showed that BBP treatment protected mice from senecionine-induced HSOS dose-dependently, which was evident by improved liver histology including reduced infiltration of inflammatory cells and collagen positive cells, alleviated intrahepatic hemorrhage and hepatic sinusoidal endothelial cells, as well as decreased conventional serum liver function indicators. In addition, BBP treatment lowered matrix metalloproteinase 9 and pyrrole-protein adducts, two well-known markers positively associated with the severity of PA-induced HSOS. Further investigation showed that BBP treatment prevents the development of liver fibrosis by decreasing transforming growth factor beta and downstream fibrotic molecules. BBP treatment also alleviated senecionine-induced liver inflammation and lowered the pro-inflammatory cytokines, in which tauroursodeoxycholic acid played an important role. What's more, BBP treatment also decreased the accumulation of hydrophobic bile acids, such as cholic acid, taurocholic acid, glycocholic acid, as well. We concluded that BBP attenuates senecionine-induced HSOS in mice by repairing the bile acids homeostasis, preventing liver fibrosis, and alleviating liver inflammation. Our present study helps to pave the way to therapeutic approaches of the treatment of PA-induced liver injury in clinics.
Animals
;
Bile
;
Bile Acids and Salts
;
Endothelial Cells/metabolism*
;
Hepatic Veno-Occlusive Disease/pathology*
;
Inflammation/pathology*
;
Liver Cirrhosis/drug therapy*
;
Mice
;
Powders
;
Pyrrolizidine Alkaloids/adverse effects*
;
Ursidae
6.Effects of exosomes from human adipose-derived mesenchymal stem cells on pulmonary vascular endothelial cells injury in septic mice and its mechanism.
Wei Xia CAI ; Kuo SHEN ; Tao CAO ; Jing WANG ; Ming ZHAO ; Ke Jia WANG ; Yue ZHANG ; Jun Tao HAN ; Da Hai HU ; Ke TAO
Chinese Journal of Burns 2022;38(3):266-275
Objective: To investigate the effects of exosomes from human adipose-derived mesenchymal stem cells (ADSCs) on pulmonary vascular endothelial cells (PMVECs) injury in septic mice and its mechanism. Methods: The experimental research method was adopted. The primary ADSCs were isolated and cultured from the discarded fresh adipose tissue of 3 patients (female, 10-25 years old), who were admitted to the First Affiliated Hospital of Air Force Medical University undergoing abdominal surgery, and the cell morphology was observed by inverted phase contrast microscope on the 5th day. The expressions of CD29, CD34, CD44, CD45, CD73, and CD90 of ADSCs in the third passage were detected by flow cytometry. The third to the fifth passage of ADSCs were collected, and their exosomes from the cell supernatant were obtained by differential ultracentrifugation, and the shape, particle size, and the protein expressions of CD9, CD63, tumor susceptibility gene 101 (TSG101), and β-actin of exosomes were detected, respectively, by transmission electron microscopy, nano-particle tracking analysis and Western blotting. Twenty-four adult male BALB/c mice were adopted and were divided into normal control group, caecal ligation perforation (CLP) alone group, and CLP+ADSC-exosome group with each group of 8 according to random number table (the same grouping method below) and were treated accordingly. At 24 h after operation, tumor necrosis factor (TNF-α) and interleukin 1β (IL-1β) levels of mice serum were detected by enzyme-linked immunosorbent assay, and lung tissue morphology of mice was detected by hematoxylin-eosin and myeloperoxidase staining, and the expression of 8-hydroxy-deoxyguanosine (8-OHdG) of mouse lung cells was detected by immunofluorescence method. Primary PMVECs were obtained from 1-month-old C57 mice regardless gender by tissue block method. The expression of CD31 of PMVECs was detected by immunofluorescence and flow cytometry. The third passage of PMVECs was co-cultured with ADSCs derived exosomes for 12 h, and the phagocytosis of exosomes by PMVECs was detected by PKH26 kit. The third passage of PMVECs were adopted and were divided into blank control group, macrophage supernatant alone group, and macrophage supernatant+ADSC-exosome group, with 3 wells in each group, which were treated accordingly. After 24 h, the content of reactive oxygen species in cells was detected by flow cytometry, the expression of 8-OHdG in cells was detected by immunofluorescence, and Transwell assay was used to determine the permeability of cell monolayer. The number of samples in above were all 3. Data were statistically analyzed with one-way analysis of variance and least significant difference t test. Results: The primary ADSCs were isolated and cultured to day 5, growing densely in a spindle shape with a typical swirl-like. The percentages of CD29, CD44, CD73 and CD90 positive cells of ADSCs in the third passage were all >90%, and the percentages of CD34 and CD45 positive cells were <5%. Exosomes derived from ADSCs of the third to fifth passages showed a typical double-cavity disc-like structure with an average particle size of 103 nm, and the protein expressions of CD9, CD63 and TSG101 of exosomes were positive, while the protein expression of β-actin of exosomes was negative. At 24 h after operation, compared with those in normal control group, both the levels of TNF-α and IL-1β of mice serum in CLP alone group were significantly increased (with t values of 28.76 and 29.69, respectively, P<0.01); compared with those in CLP alone group, both the content of TNF-α and IL-1β of mice serum in CLP+ADSC-exosome group was significantly decreased (with t values of 9.90 and 4.76, respectively, P<0.05 or P<0.01). At 24 h after surgery, the pulmonary tissue structure of mice in normal control group was clear and complete without inflammatory cell infiltration; compared with those in normal control group, the pulmonary tissue edema and inflammatory cell infiltration of mice in CLP alone group were more obvious; compared with those in CLP alone group, the pulmonary tissue edema and inflammatory cell infiltration of mice in CLP+ADSC-exosome group were significantly reduced. At 24 h after operation, endothelial cells in lung tissues of mice in 3 groups showed positive expression of CD31; compared with that in normal control group, the fluorescence intensity of 8-OHdG positive cells of the lung tissues of mice in CLP alone group was significantly increased, and compared with that in CLP alone group, the fluorescence intensity of 8-OHdG positive cells in the lung tissues of mice in CLP+ADSC-exosome group was significantly decreased. The PMVECs in the 3rd passage showed CD31 positive expression by immunofluorescence, and the result of flow cytometry showed that CD31 positive cells accounted for 99.5%. At 12 h after co-culture, ADSC-derived exosomes were successfully phagocytose by PMVECs and entered its cytoplasm. At 12 h after culture of the third passage of PMVECs, compared with that in blank control group, the fluorescence intensity of reactive oxygen species of PMVECs in macrophage supernatant alone group was significantly increased (t=15.73, P<0.01); compared with that in macrophage supernatant alone group, the fluorescence intensity of reactive oxygen species of PMVECs in macrophage supernatant+ADSC-exosome group was significantly decreased (t=4.72, P<0.01). At 12 h after culture of the third passage of PMVECs, and the 8-OHdG positive fluorescence intensity of PMVECs in macrophage supernatant alone group was significantly increased; and compared with that in blank control group, the 8-OHdG positive fluorescence intensity of PMVECs in macrophage+ADSC-exosome supernatant group was between blank control group and macrophage supernatant alone group. At 12 h after culture of the third passage PMVECs, compared with that in blank control group, the permeability of PMVECs monolayer in macrophage supernatant alone group was significantly increased (t=6.34, P<0.01); compared with that in macrophage supernatant alone group, the permeability of PMVECs monolayer cells in macrophage supernatant+ADSC-exosome group was significantly decreased (t=2.93, P<0.05). Conclusions: Exosomes derived from ADSCs can ameliorate oxidative damage in mouse lung tissue, decrease the level of reactive oxygen species, 8-OHdG expression, and permeability of PMVECs induced by macrophage supernatant.
Animals
;
Endothelial Cells/metabolism*
;
Exosomes/metabolism*
;
Female
;
Humans
;
Lung Injury/metabolism*
;
Male
;
Mesenchymal Stem Cells/metabolism*
;
Mice
;
Sepsis/pathology*
7.The combination of EGCG with warfarin reduces deep vein thrombosis in rabbits through modulating HIF-1α and VEGF via the PI3K/AKT and ERK1/2 signaling pathways.
Yan LI ; Jing-Ping GE ; Ke MA ; Yuan-Yuan YIN ; Juan HE ; Jian-Ping GU
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):679-690
Deep venous thrombosis (DVT) poses a major challenge to public health worldwide. Endothelial cell injury evokes inflammatory and oxidative responses that contribute to thrombus formation. Tea polyphenol (TP) in the form of epigallocatechin-3-gallate (EGCG) has anti-inflammatory and oxidative effect that may ameliorate DVT. However, the precise mechanism remains incompletely understood. The current study was designed to investigate the anti-DVT mechanism of EGCG in combination with warfarin (an oral anticoagulant). Rabbits were randomly divided into five groups. A DVT model of rats was established through ligation of the inferior vena cava (IVC) and left common iliac vein, and the animals were orally administered with EGCG, warfarin, or vehicle for seven days. In vitro studies included pretreatment of human umbilical vein endothelial cells (HUVECs) with different concentrations of EGCG for 2 h before exposure to hydrogen peroxide. Thrombus weight and length were examined. Histopathological changes were observed by hematoxylin-eosin staining. Blood samples were collected for detecting coagulation function, including thrombin and prothrombin times, activated partial thromboplastin time, and fibrinogen levels. Protein expression in thrombosed IVCs and HUVECs was evaluated by Western blot, immunohistochemical analysis, and/or immunofluorescence staining. RT-qPCR was used to determine the levels of AGTR-1 and VEGF mRNA in IVCs and HUVECs. The viability of HUVECs was examined by CCK-8 assay. Flow cytometry was performed to detect cell apoptosis and ROS generation was assessed by 2',7'-dichlorofluorescein diacetate reagent. In vitro and invivo studies showed that EGCG combined with warfarin significantly reduced thrombus weight and length, and apoptosis in HUVECs. Our findings indicated that the combination of EGCG and warfarin protects HUVECs from oxidative stress and prevents apoptosis. However, HIF-1α silencing weakened these effects, which indicated that HIF-1α may participate in DVT. Furthermore, HIF-1α silencing significantly up-regulated cell apoptosis and ROS generation, and enhanced VEGF expression and the activation of the PI3K/AKT and ERK1/2 signaling pathways. In conclusion, our results indicate that EGCG combined with warfarin modifies HIF-1α and VEGF to prevent DVT in rabbits through anti-inflammation via the PI3K/AKT and ERK1/2 signaling pathways.
Animals
;
Anticoagulants/pharmacology*
;
Catechin/analogs & derivatives*
;
Eosine Yellowish-(YS)/pharmacology*
;
Fibrinogen/pharmacology*
;
Hematoxylin/pharmacology*
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Hydrogen Peroxide/pharmacology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
MAP Kinase Signaling System
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Polyphenols/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger
;
Rabbits
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
;
Sincalide/pharmacology*
;
Tea
;
Thrombin/pharmacology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Venous Thrombosis/pathology*
;
Warfarin/pharmacology*
8.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
9.Effect of Miscanthus sinensis var. purpurascens Flower Extract on Proliferation and Molecular Regulation in Human Dermal Papilla Cells and Stressed C57BL/6 Mice.
Gi Hee JEONG ; William A BOISVERT ; Mei-Zhu XI ; Yi-Lin ZHANG ; Young-Bin CHOI ; Sunghun CHO ; Sanghyun LEE ; Changsun CHOI ; Bog-Hieu LEE
Chinese journal of integrative medicine 2018;24(8):591-599
OBJECTIVESTo investigate the hair growth-promoting effect of Miscanthus sinensis var. purpurascens (MSP) flower extracton on in vitro and in vivo models.
METHODSMSP flower extract was extracted in 99.9% methanol and applied to examine the proliferation of human dermal papilla cells (hDPCs) in vitro at the dose of 3.92-62.50 μg/mL and hair growth of C57BL/6 mice in vivo at the dose of 1000 μg/mL. The expression of transforming growth factor β1 (TGF-β1), hepatocyte growth factor (HGF), β-catenin, substance P was measured by relative quantitative realtime polymerase chain reaction. Histopathological and immunohistochemical analysis were performed.
RESULTSMSP (7.81 μg/mL) down-regulated TGF-β1 and up-regulated HGF and β-catenin in hDPCs (P<0.01). MSP (1000 μg/mL)-treated mice showed the earlier transition of hair follicles from the telogen to the anagen phase. The number of mast cells was lower in the MSP-treated mice than in other groups (P<0.05 vs. NCS group). Substance P and TGF-β1 were expressed in hair follicles and skin of the MSP group lower than that in negative control. Stem cell factor in hair follicles was up-regulated in the MSP-treated mice (P<0.01).
CONCLUSIONSThe MSP flower extract may have hair growth-promotion activities.
Animals ; Antioxidants ; pharmacology ; Cell Count ; Cell Proliferation ; drug effects ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Female ; Flowers ; chemistry ; Hair Follicle ; cytology ; drug effects ; growth & development ; Hepatocyte Growth Factor ; metabolism ; Humans ; Mast Cells ; cytology ; Mice, Inbred C57BL ; Phosphorylation ; drug effects ; Plant Extracts ; pharmacology ; Poaceae ; chemistry ; RNA, Messenger ; genetics ; metabolism ; Skin ; metabolism ; Stem Cell Factor ; metabolism ; Stress, Psychological ; pathology ; Substance P ; metabolism ; Transforming Growth Factor beta ; genetics ; metabolism ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; beta Catenin ; metabolism
10.The protective effects of Astragaloside Ⅳ on diastolic function of rat thoracic aortic rings impaired by microvesicles.
Ye-Yi LI ; Man SHANG ; Kun-Wei ZHANG ; Su WEI ; Chao LIU ; Qian ZHU ; Jun-Yu ZHAO ; Yan-Na WU ; Jun-Qiu SONG ; Yan-Xia LIU
Chinese Journal of Applied Physiology 2018;34(2):164-168
OBJECTIVES:
To investigate the effects of Astragaloside IV (AST) on diastolic function of rat thoracic aorta rings which was injured by microvesicles derived from hypoxia/reoxygenation (H/R)-treated human umbilical vein endothelial cells (HUVECs), and the mechanism of AST.
METHODS:
H/R-induced endothelial microvesicles (H/R-EMVs) were generated from cultured HUVECs under the condition of hypoxia for 12 hour/Reoxygenation for 4 hour, H/R-EMVs were stored in D-Hank's solution. Male Wistar rats were underwent thoracotomy, the thoracic aorta with intact endothelium were carefully removed and cut into 3~4 mm rings. The experiment was divided into six groups. H/R-EMVs group:thoracic aortic rings of rats were incubated in culture medium and treated with H/R-EMVs in a final concentration of 10g/ml; different doses of AST groups:thoracic aortic rings of rats were treated with 10, 20, 40, 60 mg/L AST co-incubated with 10g/ml H/R-EMVs respectively; control group were treated with the same volume of D-Hank's solution. Duration of incubation was 4 h, each group was tested in five replicate aortic rings. Effects of AST on endothelium-dependent relaxation were detected. The production of nitric oxide (NO) and the level of endothelial NO synthase (eNOS), phosphorylated eNOS (p-eNOS, Ser-1177), serine/threonine kinase (Akt), phosphorylated Akt (p-Akt, Ser-473), extracellular regulated protein kinases (ERK1/2) and phosphorylated ERK1/2 (p-ERK1/2, Thr202/Tyr204) of rat thoracic aortic rings were detected.
RESULTS:
Teng/ml H/R-EMVs could impaire the relaxation of rat thoracic aortic rings significantly (<0.01). Compared with H/R-EMVs group, relaxation of rat thoracic aortic rings was increased by 20, 40 and 60 mg/L AST in a concentration-dependent manner (<0.01), the level of NO production was also enhanced (<0.05, <0.01). The level of t-eNOS, t-Akt and ERK1/2 was not changed, but the level of p-eNOS, p-Akt and p-ERK1/2 increased by the treatment with AST (<0.01).
CONCLUSIONS
AST could effectively ameliorate endotheliumdependent relaxation of rat thoracic aortic rings impaired by H/R-EMVs in a concentration-dependent manner, the mechanism might involve the increase in production of NO, and the protein level of p-eNOS, p-Akt and p-ERK1/2.
Animals
;
Aorta, Thoracic
;
drug effects
;
Cell-Derived Microparticles
;
pathology
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
In Vitro Techniques
;
MAP Kinase Signaling System
;
Male
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase Type III
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats
;
Rats, Wistar
;
Saponins
;
pharmacology
;
Triterpenes
;
pharmacology
;
Vasodilation

Result Analysis
Print
Save
E-mail