1.Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation.
Shu CHEN ; Qian WANG ; Bing HAN ; Jia WU ; Ding-Kun LIU ; Jun-Dong ZOU ; Mi WANG ; Zhi-Hui LIU
Journal of Zhejiang University. Science. B 2020;21(4):327-340
		                        		
		                        			
		                        			Combined radiation-wound injury (CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells (HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells (HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8 (CCK-8) assay. The secretion of pro-inflammatory cytokines (human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay (ELISA). The expression of pro-angiogenic factors (vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)) mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Relevant molecules of the nuclear factor-κB (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs (HPMSCs/ leptin) exhibited better cell proliferation, migration, and angiogenic potential (expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines (human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.
		                        		
		                        		
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Cytokines/biosynthesis*
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells/radiation effects*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation/etiology*
		                        			;
		                        		
		                        			Leptin/pharmacology*
		                        			;
		                        		
		                        			Mesenchymal Stem Cells/physiology*
		                        			;
		                        		
		                        			Neovascularization, Physiologic/physiology*
		                        			;
		                        		
		                        			Placenta/cytology*
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			STAT3 Transcription Factor/genetics*
		                        			;
		                        		
		                        			Transcription Factor RelA/genetics*
		                        			;
		                        		
		                        			X-Rays
		                        			
		                        		
		                        	
2.Culture of rat corpus cavernosal endothelial cells using modified immunomagnetic beads and cloning.
National Journal of Andrology 2017;23(6):503-509
		                        		
		                        			Objective:
		                        			To search for the methods of isolating, purifying and culturing corpus cavernosal endothelial cells (CCECs) from SD rats, observe their growth characteristics, and providing seed cells for the study of erectile dysfunction (ED).
		                        		
		                        			METHODS:
		                        			The corpus cavernosal tissue from the SD rat was digested with 0.1% elastase, followed by purification of CCECs with immunomagnetic beads. After further amplification, monoclonal CCECs were sorted out with the cloning cylinder and their morphological and proliferative characteristics were observed. The von Willebrand factor (VWF) in the CCECs was identified by immunofluorescence staining, the CD31 molecule detected by immumohistochemistry, the purity of the CCECs determined by flow cytometry, and the proliferation of the cells measured with CCK-8 and growth curves.
		                        		
		                        			RESULTS:
		                        			After 7 days of purification and culture, the CCECs were fused into a monolayer under the inverted phase-contrast microscope, arranged like flagstones. The growth curves showed that the CCECs were in latency with a low growth rate at 1-2 days, in the logarithmic growth phase with a rapid rate at 3-4 days, and into the platform phase around the 6th day. VWF was positively expressed in the CCECs with much green fluorescence, and so was CD31 with a large number of brownish particles. The positive rate of the CCECs which were labelled with the VWF purified with magnetic beads combined with cloning cylinders was up to (91.9±3.75)%.
		                        		
		                        			CONCLUSIONS
		                        			High-purity rat CCECs can be cultured successfully using immunomagnetic beads combined with cloning cylinders, with stable proliferation and passage in the endothelial cell medium.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Culture Techniques
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Endothelial Cells
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Erectile Dysfunction
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Flow Cytometry
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunomagnetic Separation
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Penis
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Platelet Endothelial Cell Adhesion Molecule-1
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Sincalide
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			von Willebrand Factor
		                        			;
		                        		
		                        			analysis
		                        			
		                        		
		                        	
3.Knockdown of ezrin suppresses the migration and angiogenesis of human umbilical vein endothelial cells in vitro.
Liang-ping ZHAO ; Lei HUANG ; Xun TIAN ; Feng-qi LIANG ; Jun-cheng WEI ; Xian ZHANG ; Sha LI ; Qing-hua ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(2):243-248
		                        		
		                        			
		                        			Progressive tumor growth is dependent on angiogenesis. The mechanisms by which endothelial cells (ECs) are incorporated to develop new blood vessels are not well understood. Recent studies reveal that the ezrin radixin moesin (ERM) family members are key regulators of cellular activities such as adhesion, morphogenetic change, and migration. We hypothesized that ezrin, one of the ERM family members, may play important roles in ECs organization during angiogenesis, and new vessels formation in preexisting tissues. To test this hypothesis, in this study, we investigated the effects of ezrin gene silencing on the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. HUVECs were transfected with plasmids with ezrin-targeting short hairpin RNA by using the lipofectamine-2000 system. Wound assay in vitro and three-dimensional culture were used to detect the migration and angiogenesis capacity of HUVECs. The morphological changes of transfected cells were observed by confocal and phase contrast microscopy. Our results demonstrated that the decreased expression of ezrin in HUVECs significantly induced the morphogenetic changes and cytoskeletal reorganization of the transfected cells, and also reduced cell migration and angiogenesis capacity in vitro, suggesting that ezrin play an important role in the process of HUVECs migration and angiogenesis.
		                        		
		                        		
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Cytoskeletal Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cytoskeleton
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neovascularization, Physiologic
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
4.Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells.
Hong ZHU ; Lankun LUO ; Ying WANG ; Jun TAN ; Peng XUE ; Qintao WANG
Chinese Journal of Stomatology 2016;51(3):154-159
OBJECTIVETo investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC).
METHODSHuman PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed.
RESULTSPhosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05).
CONCLUSIONSThe endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.
Antigens, CD ; genetics ; metabolism ; Butadienes ; pharmacology ; Cadherins ; genetics ; metabolism ; Cell Differentiation ; Endothelial Cells ; cytology ; physiology ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; Mitogen-Activated Protein Kinase 3 ; antagonists & inhibitors ; metabolism ; Nitriles ; pharmacology ; Periodontal Ligament ; cytology ; metabolism ; Phosphorylation ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Signal Transduction ; Stem Cells ; cytology ; physiology ; Time Factors ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; pharmacology
5.Pro-angiogenic activity of notoginsenoside R1 in human umbilical vein endothelial cells in vitro and in a chemical-induced blood vessel loss model of zebrafish in vivo.
Bin-Rui YANG ; Si-Jia HONG ; Simon Ming-Yuen LEE ; Wei-Hong CONG ; Jian-Bo WAN ; Zhe-Rui ZHANG ; Qing-Wen ZHANG ; Yi ZHANG ; Yi-Tao WANG ; Zhi-Xiu LIN
Chinese journal of integrative medicine 2016;22(6):420-429
OBJECTIVEThis study aimed at investigating whether notoginsenoside R1 (R1), a unique saponin found in Panax notoginseng could promote angiogenic activity on human umbilical vein endothelial cells (HUVECs) and elucidate their potential molecular mechanisms. In addition, vascular restorative activities of R1 was assessed in a chemically-induced blood vessel loss model in zebrafish.
METHODSThe in vitro angiogenic effect of R1 was compared with other previously reported angiogenic saponins Rg1 and Re. The HUVECs proliferation in the presence of R1 was determined by cell proliferation kit II (XTT) assay. R1, Rg1 and Re-induced HUVECs invasion across polycarbonate membrane was stained with Hoechst-33342 and quantified microscopically. Tube formation assay using matrigelcoated wells was performed to evaluate the pro-angiogenic actions of R1. In order to understand the mechanism underlying the pro-angiogenic effect, various pathway inhibitors such as SU5416, wortmannin (wort) or L-Nω-nitro- L-arginine methyl ester hydrochloride (L-NAME), SH-6 were used to probe the possible involvement of signaling pathway in the R1 mediated HUVECs proliferation. In in vivo assays, zebrafish embryos at 21 hpf were pre-treated with vascular endothelial growth factor (VEGF) receptor kinase inhibitor II (VRI) for 3 h only and subsequently post-treated with R1 for 48 h, respectively. The intersegmental vessels (ISVs) in zebrafish were assessed for the restorative effect of R1 on defective blood vessels.
RESULTSR1 could stimulate the proliferation of HUVECs. In the chemoinvasion assay, R1 significantly increased the number of cross-membrane HUVECs. In addition, R1 markedly enhanced the tube formation ability of HUVECs. The proliferative effects of these saponins on HUVECs were effectively blocked by the addition of SU5416 (a VEGF-KDR/Flk-1 inhibitor). Similarly, pre-treatment with wort [a phosphatidylinositol 3-kinase (PI3K)-kinase inhibitor], L-NAME [an endothelial nitric oxide synthase (eNOS) inhibitor] or SH-6 (an Akt pathway inhibitor) significantly abrogated the R1 induced proliferation of HUVECs. In chemicallyinduced blood vessel loss model in zebrafish, R1 significantly rescue the damaged ISVs.
CONCLUSIONR1, similar to Rg1 and Re, had been showed pro-angiogenic action, possibly via the activation of the VEGF-KDR/Flk-1 and PI3K-Akt-eNOS signaling pathways. Our findings also shed light on intriguing pro-angiogenic effect of R1 under deficient angiogenesis condition in a pharmacologic-induced blood vessels loss model in zebrafish. The present study in vivo and in vitro provided scientific evidence to explain the ethnomedical use of Panax notoginseng in the treatment of cardiovascular diseases, traumatic injuries and wound healing.
Animals ; Blood Vessels ; pathology ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Collagen ; pharmacology ; Disease Models, Animal ; Drug Combinations ; Ginsenosides ; chemistry ; pharmacology ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; enzymology ; physiology ; Humans ; Laminin ; pharmacology ; Neovascularization, Physiologic ; drug effects ; Phosphatidylinositol 3-Kinases ; metabolism ; Protein Kinase Inhibitors ; pharmacology ; Proteoglycans ; pharmacology ; Proto-Oncogene Proteins c-akt ; metabolism ; Vascular Endothelial Growth Factor Receptor-2 ; metabolism ; Zebrafish
6.Interaction between functional nano-hydroxyapatite and cells and the underlying mechanisms.
Min YANG ; Yanzhong ZHAO ; Guohui WANG ; Juan TAN ; Shaihong ZHU
Journal of Central South University(Medical Sciences) 2016;41(9):937-945
		                        		
		                        			OBJECTIVE:
		                        			To explore the interaction between arginine functionalized hydroxyapatite (HAP/Arg) nanoparticles and endothelial cells, and to investigate mechanisms for endocytosis kinetics and endocytosis.
		                        		
		                        			METHODS:
		                        			Human umbilical vein endothelial cells (HUVECs) were selected as the research model.Cellular uptake of HAP/Arg nanoparticles were observed by laser scanning confocal microscopy.Average fluorescence intensity of cells after ingestion with different concentrations of HAP/Arg nanoparticles were determined by flow cytometer and atomic force microscopy.
		                        		
		                        			RESULTS:
		                        			The HAP/Arg nanoparticles with doped terbium existed in cytoplasm, and most of them distributed around the nucleus area after cellular uptake by HUVECs. Cellular uptake process of HAP/Arg nanoparticles in HUVECs was in a time and concentration dependent manner. 4 h and 50 mg/L was the best condition for uptake. HAP/Arg nanoparticles were easier to be up-taken into the cells than HAP nanoparticles without arginine functionalized.
		                        		
		                        			CONCLUSION
		                        			HAP/Arg nanoparticles are internalized by HUVECs cells through an active transport and energy-dependent endocytosis process, and it is up-taken by cells mainly through caveolin-mediated endocytosis, but the clathrin-dependent endocytic pathway is also involved..
		                        		
		                        		
		                        		
		                        			Arginine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Biological Transport, Active
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Caveolins
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Clathrin
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Durapatite
		                        			;
		                        		
		                        			pharmacokinetics
		                        			;
		                        		
		                        			Endocytosis
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Nanoparticles
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
7.Effect of colon cancer cell-derived IL-1α on the migration and proliferation of vascular endothelial cells.
Jiachi MA ; Quan CHEN ; Yuanhui GU ; Yiping LI ; Wei FANG ; Meiling LIU ; Xiaochang CHEN ; Qingjin GUO ; Shixun MA
Chinese Journal of Oncology 2015;37(11):810-815
OBJECTIVETo explore the effect of colon cancer cell-derived interleukin-1α on the migration and proliferation of human umbilical vein endothelial cells as well as the role of IL-1α and IL-1ra in the angiogenesis process.
METHODSWestern blot was used to detect the expression of IL-1α and IL-1R1 protein in the colon cancer cell lines with different liver metastatic potential. We also examined how IL-1α and IL-1ra influence the proliferation and migration of umbilical vascular endothelial cells assessed by PreMix WST-1 assay and migration assay, respectively. Double layer culture technique was used to detect the effect of IL-1α on the proliferation and migration of vascular endothelial cells and the effect of IL-1ra on the vascular endothelial cells.
RESULTSWestern blot analysis showed that IL-1α protein was only detected in highly metastatic colon cancer HT-29 and WiDr cells, but not in the lowly metastatic CaCo-2 and CoLo320 cells.Migration assay showed that there were significant differences in the number of penetrated cells between the control (17.9±3.6) and 1 ng/ml rIL-1α group (23.2±4.2), 10 ng/ml rIL-1α group (31.7±4.5), and 100 ng/ml rIL-1α group (38.6±4.9), showing that it was positively correlated with the increasing concentration of rIL-1α (P<0.01 for all). The proliferation assay showed that the absorbance values were 1.37±0.18 in the control group, and 1.79±0.14 in the 1 ng/ml rIL-1α group, 2.14±0.17 in the 10 ng/ml rIL-1α group, and 2.21±0.23 in the 100 ng/ml rIL-1α group, showing a positive correlation with the increasing concentration of rIL-1α(P<0.01 for all). IL-1ra significantly inhibited the proliferation and migration of vascular endothelial cells (P<0.01). The levels of VEGF protein were (1.697±0.072) ng/ml, (3.507±0.064)ng/ml and (4.139±0.039)ng/ml in the control, HUVECs+ IL-1α and HUVECs+ HT-29 co-culture system groups, respectively, showing a significant difference between the control and HUVECs+ 10 pg/ml rIL-1α groups and between the control and HUVECs+ HT-29 groups (P<0.01 for both).
CONCLUSIONSOur findings indicate that colon cancer cell-derived IL-1α plays an important role in the liver metastasis of colon cancer through increased VEGF level of the colon cancer cells and enhanced vascular endothelial cells proliferation, migration and angiogenesis, while IL-1ra can suppress the effect of IL-1α and inhibit the angiogenesis in colon cancer.
Blotting, Western ; Caco-2 Cells ; Cell Line, Tumor ; Cell Movement ; physiology ; Cell Proliferation ; physiology ; Coculture Techniques ; Colonic Neoplasms ; blood supply ; metabolism ; pathology ; Human Umbilical Vein Endothelial Cells ; cytology ; Humans ; Interleukin 1 Receptor Antagonist Protein ; metabolism ; physiology ; Interleukin-1alpha ; metabolism ; physiology ; Liver Neoplasms ; secondary ; Neovascularization, Pathologic ; etiology
8.Effects of inward rectifier potassium channel blockers on EPCs function.
Wen-ping LI ; Xiao-dong CUI ; Ning-ning HOU ; Xiao-yun ZHANG ; Jian-hua LIU ; Jing ZHANG ; Min CHENG
Chinese Journal of Applied Physiology 2015;31(5):448-451
OBJECTIVETo investigate the effects of inward rectifier potassium channel blockers (BaCl2, CsCl) on the functions of endothelial progenitor cells (EPCs).
METHODSDensity gradient centrifugation-isolated rat hone marrow mononuclear cells were cultured in vitro. EPCs were harvested and seeded on six culture dish when cells grew to 3-5 passages. Before testing the EPCs were synchronized with M199, which contain 2% fetal calf serum. In the end, EPCs were treated with different intervention. The experiment mainly included two parts: (1) BaCl2 (100 micromol/L) and free BaC2 of Tyrodes solution; (2) CsCl (1 mmol/L) and control. Cell pretreated with blockers above mentioned for 12 h, then the gene expression of stromal cell-derived factor-1 (SDF-1), epoprotenol (PGI2) were assessed, beyond that the ability of adhesion, migration were assayed with different tests. In addition, the medium was collected when EPCs were treated for 3 days. The levels of SDF-1 were measured by sandwich enzyme-linked immunosorbent assay (ELISA). Going even further, EPCs were treated with the signal pathway blockers in advance, after repeat the above steps, in order to analyze the change of SDF-1 and then discuss its mechanism.
RESULTSCompared with control group, BaCl2, CsCl could increase EPC adhesion and migration to same extent. Moreover, the gene expression of SDF-1, PGI2 was significantly up-regulated and the production of SDF-1 increased evidently. Furthermore, the mechanism of SDF-1 secretion increasing mainly was associated with eNOS signaling pathways.
CONCLUSIONBa2+ and Cs+ play important roles in increasing EPCs functions, such as adhesion, migration and secretion.
Animals ; Barium Compounds ; pharmacology ; Cells, Cultured ; Cesium ; pharmacology ; Chemokine CXCL12 ; metabolism ; Chlorides ; pharmacology ; Endothelial Cells ; cytology ; Enzyme-Linked Immunosorbent Assay ; Potassium Channels, Inwardly Rectifying ; antagonists & inhibitors ; physiology ; Rats ; Stem Cells ; cytology
9.Biologic effects of different concentrations of putrescine on human umbilical vein endothelial cells.
Jianxia CHEN ; Xinzhou RONG ; Email: XINZHOURO@163.COM. ; Guicheng FAN ; Songze LI ; Tao ZHANG ; Qinghui LI
Chinese Journal of Burns 2015;31(6):446-450
OBJECTIVETo explore the effects of different concentrations of putrescine on proliferation, migration, and apoptosis of human umbilical vein endothelial cells (HUVECs).
METHODSHUVECs were routinely cultured in vitro. The 3rd to the 5th passage of HUVECs were used in the following experiments. (1) Cells were divided into 500, 1 000, and 5 000 µg/mL putrescine groups according to the random number table (the same grouping method was used for following grouping), with 3 wells in each group, which were respectively cultured with complete culture solution containing putrescine in the corresponding concentration for 24 h. Morphology of cells was observed by inverted optical microscope. (2) Cells were divided into 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1 000.0 µg/mL putrescine groups, and control group, with 4 wells in each group. Cells in the putrescine groups were respectively cultured with complete culture solution containing putrescine in the corresponding concentration for 24 h, and cells in control group were cultured with complete culture solution with no additional putrescine for 24 h. Cell proliferation activity (denoted as absorption value) was measured by colorimetry. (3) Cells were divided (with one well in each group) and cultured as in experiment (2), and the migration ability was detected by transwell migration assay. (4) Cells were divided (with one flask in each group) and cultured as in experiment (2), and the cell apoptosis rate was determined by flow cytometer. Data were processed with one-way analysis of variance, Kruskal-Wallis test, and Dunnett test.
RESULTS(1) After 24-h culture, cell attachment was good in 500 µg/mL putrescine group, and no obvious change in the shape was observed; cell attachment was less in 1 000 µg/mL putrescine group and the cells were small and rounded; cells in 5 000 µg/mL putrescine group were in fragmentation without attachment. (2) The absorption values of cells in 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1 000.0 µg/mL putrescine groups, and control group were respectively 0.588 ± 0.055, 0.857 ± 0.031, 0.707 ± 0.031, 0.662 ± 0.023, 0.450 ± 0.019, 0.415 ± 0.014, 0.359 ± 0.020, 0.204 ± 0.030, and 0.447 ± 0.021, with statistically significant differences among them (χ(2) = 6.86, P = 0.009). The cell proliferation activity in 0.5, 1.0, 5.0, and 10.0 µg/mL putrescine groups was higher than that in control group (P < 0.05 or P < 0.01). The cell proliferation activity in 500.0 and 1 000.0 µg/mL putrescine groups was lower than that in control group (with P values below 0.01). The cell proliferation activity in 50.0 and 100.0 µg/mL putrescine groups was close to that in control group (with P values above 0.05). (3) There were statistically significant differences in the numbers of migrated cells between the putrescine groups and control group (F = 138.662, P < 0.001). The number of migrated cells was more in 1.0, 5.0, and 10.0 µg/mL putrescine groups than in control group (with P value below 0.01). The number of migrated cells was less in 500.0 and 1 000.0 µg/mL putrescine groups than in control group (with P value below 0.01). The number of migrated cells in 0.5, 50.0, and 100.0 µg/mL putrescine groups was close to that in control group (with P values above 0.05). (4) There were statistically significant differences in the apoptosis rate between the putrescine groups and control group (χ(2)=3.971, P=0.046). The cell apoptosis rate was lower in 0.5, 1.0, 5.0, and 10.0 µg/mL putrescine groups than in control group (with P values below 0.05). The cell apoptosis rate was higher in 500.0 and 1 000.0 µg/mL putrescine groups than in control group (with P values below 0.01). The cell apoptosis rates in 50.0 and 100.0 µg/mL putrescine groups were close to the cell apoptosis rate in control group (with P values above 0.05).
CONCLUSIONSLow concentration of putrescine can remarkably enhance the ability of proliferation and migration of HUVECs, while a high concentration of putrescine can obviously inhibit HUVECs proliferation and migration, and it induces apoptosis.
Apoptosis ; drug effects ; Biological Products ; Cell Line ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Flow Cytometry ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; Humans ; Putrescine ; administration & dosage ; adverse effects ; pharmacology ; physiology ; Skin ; cytology ; Wound Healing
10.A Preliminary Study of the Therapeutic Role of Human Early Fetal Aorta-derived Endothelial Progenitor Cells in Inhibiting Carotid Artery Neointimal Hyperplasia.
Rong-Wei XU ; Wen-Jian ZHANG ; Jian-Bin ZHANG ; Jian-Yan WEN ; Meng WANG ; Hong-Lin LIU ; Lin PAN ; Chang-An YU ; Jin-Ning LOU ; Peng LIU ;
Chinese Medical Journal 2015;128(24):3357-3362
BACKGROUNDEndothelial cell damage is an important pathophysiological step of restenosis after angioplasty and stenting. Cell transplantation has great therapeutic potential for endothelial recovery. We investigated the effect of transplanting endothelial progenitor cells (EPCs) derived from human early fetal aortas in rat injured arteries.
METHODSThe carotid arterial endothelium of Sprague-Dawley rats was damaged by dilatation with a 1.5 F balloon catheter, and then EPCs derived from human early fetal aortas (<14 weeks) were injected into the lumen of the injured artery in transplanted rats, with an equal volume of normal saline injected into control rats. Rats were sacrificed at 2 and 4 weeks after treatment and transplanted cells were identified by immunohistochemical staining with anti-human CD31 and anti-human mitochondria antibodies. Arterial cross-sections were analyzed by pathology, immunohistochemistry, and morphometry.
RESULTSGreen fluorescence-labeled EPCs could be seen in the endovascular surface of balloon-injured vessels after transplantation. The intimal area and intimal/medial area ratio were significantly smaller in the transplanted group than in the control (P < 0.05) and the residual lumen area was larger (P < 0.05). After EPC transplantation, a complete vascular endothelial layer was formed, which was positive for human von Willebrand factor after immunohistochemical staining, and immunohistochemical staining revealed many CD31- and mitochondria-positive cells in the re-endothelialized endothelium with EPC transplantation but not control treatment.
CONCLUSIONEPCs derived from human early fetal aorta were successfully transplanted into injured vessels and might inhibit neointimal hyperplasia after vascular injury.
Animals ; Carotid Arteries ; pathology ; Cell Adhesion ; physiology ; Cell Survival ; physiology ; Cell Transplantation ; Endothelial Progenitor Cells ; cytology ; physiology ; Humans ; Immunohistochemistry ; Microscopy, Fluorescence ; Neointima ; therapy ; Rats ; Rats, Sprague-Dawley
            
Result Analysis
Print
Save
E-mail