1.Virus hijacking ESCRT system to promote self-replication: a review.
Jun DAI ; Xusheng QIU ; Chan DING
Chinese Journal of Biotechnology 2023;39(10):3948-3965
Endosomal sorting complex required for transport (ESCRT) system drives various cellular processes, including endosome sorting, organelle biogenesis, vesicle transport, maintenance of plasma membrane integrity, membrane fission during cytokinesis, nuclear membrane reformation after mitosis, closure of autophagic vacuoles, and enveloped virus budding. Increasing evidence suggests that the ESCRT system can be hijacked by different family viruses for their proliferation. At different stages of the virus life cycle, viruses can interfere with or exploit ESCRT-mediated physiological processes in various ways to maximize their chance of infecting the host. In addition, many retroviral and RNA viral proteins possess "late domain" motifs, which can recruit host ESCRT subunit proteins to assist in virus endocytosis, transport, replicate, budding and efflux. Therefore, the "late domain" motifs of viruses and ESCRT subunit proteins could serve as promising drug targets in antiviral therapy. This review focuses on the composition and functions of the ESCRT system, the effects of ESCRT subunits and virus "late domain" motifs on viral replication, and the antiviral effects mediated by the ESCRT system, aiming to provide a reference for the development and utilization of antiviral drugs.
Endosomal Sorting Complexes Required for Transport/metabolism*
;
Viruses/metabolism*
;
Protein Transport
;
Virus Replication
;
Endosomes/metabolism*
;
Virus Release
2.Advance in research on recycling antibody.
Can WEN ; Yuanzhi CHEN ; Wenxin LUO
Chinese Journal of Biotechnology 2019;35(2):183-194
Monoclonal antibodies have become the main type of antibody drug because of their high specificity and strong affinity to antigen. However, with the intensive study of the natural monoclonal antibody, many defects have faced, such as the limit times of binding to antigen, the unanticipated antibody clearance and antigen accumulation. Therefore, studies are no longer limited to the natural antibody screening, but rather to improve the efficiency of antibody drugs by engineering. In recent years, the bottlenecks in the development of conventional antibody have been solved effectively since the discovery of a novel recycling antibody. Recycling antibody binds to an antigen in plasma and dissociates from the antigen in endosome, thus maximizing the use of antibody and reducing antigen-mediated antibody clearance and antibody-mediated antigen accumulation. In addition, recycling antibodies can enhance the affinity with Fc receptors through further Fc modification. This paper reviews the research progress of circulating antibodies, including its characteristics, transformation methods and prospects.
Antibodies, Monoclonal
;
immunology
;
Antigens
;
Endosomes
;
Protein Binding
;
Receptors, Fc
3.Progress in endosomal Na⁺,K⁺/H⁺ antiporter in Arabidopsis thaliana.
Chinese Journal of Biotechnology 2019;35(8):1424-1432
Important progress has been made in the interpretation of subcellular location, ion transport characteristics and biological functions of endosomal Na⁺,K⁺/H⁺ antiporter in Arabidopsis thaliana. The endosomal Na⁺,K⁺/H⁺ antiporter contain two members, AtNHX5 and AtNHX6, whose amino acid sequence similarity is 78.7%. Studies have shown that AtNHX5 and AtNHX6 are functionally redundant, and they are all located in Golgi, trans-Golgi network (TGN), endoplasmic reticulum (ER) and prevacuolar compartment (PVC). AtNHX5 and AtNHX6 are critical for salt tolerance stress and the homeostasis of pH and K⁺. It has been reported that there are conservative acidic amino acid residues that can regulate their ion activity in the endosomal NHXs transmembrane domain, which plays a decisive role in their own functions. The results of the latest research indicate that endosomal NHXs affect vacuolar transport and protein storage, and participate in the growth of auxin-mediated development in A. thaliana. In this paper, the progress of subcellular localization, ion transport, function and application of endosomal NHXs in A. thaliana was summarized.
Arabidopsis
;
Arabidopsis Proteins
;
Endosomes
;
Sodium-Hydrogen Exchangers
;
Vacuoles
4.Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein
Yoon Sun CHUN ; Oh Hoon KWON ; Hyun Geun OH ; Yoon Young CHO ; Hyun Ok YANG ; Sungkwon CHUNG
Biomolecules & Therapeutics 2019;27(3):276-282
β-amyloid precursor protein (APP) can be cleaved by α-, and γ-secretase at plasma membrane producing soluble ectodomain fragment (sAPPα). Alternatively, following endocytosis, APP is cleaved by β-, and γ-secretase at early endosomes generating β-amyloid (Aβ), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for Aβ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased Aβ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on Aβ production. We found that justicidin A reduced endocytosis of APP, increasing sAPPα level, while decreasing Aβ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on Aβ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.
Alzheimer Disease
;
Cell Membrane
;
Cognition
;
Endocytosis
;
Endosomes
;
HeLa Cells
;
Humans
;
Tanzania
;
Vegetables
5.Role of endocytosis in cell surface CXC chemokine receptor 4 expression of stem cells from apical papilla.
Xin Yun YAO ; Xiao Min GAO ; Xiao Ying ZOU ; Lin YUE
Journal of Peking University(Health Sciences) 2019;51(5):893-899
OBJECTIVE:
To evaluate the change of cell surface CXC chemokine receptor 4 (CXCR4) expression of stem cells from apical papilla (SCAP) after the inhibition of endocytotic pathway, thus to provide experimental basis for the mechanism of SCAP migration.
METHODS:
The immunofluorescence analysis was conducted to examine the co-expression of CXCR4 and endocytotic compartments, including early endosomes, recycling endosomes and lysosomes in SCAP. Several Rab proteins were applied as markers of organelles in the endocytotic pathway, including Rab5 for early endosomes, Rab11A for recycling endosomes, and Lamp1 for lysosomes. The co-localization of CXCR4 with these endodontic compartments was further observed by proximity ligation assay (PLA). SCAP was treated with two kinds of endocytotic inhibitors, Blebbistatin and Dynasore, at a concentration of 80 μmol/L, respectively. The conditioning time was 1 hour. Flow cytometry was carried out to evaluate the proportion of SCAP that expressed CXCR4 on cell surface. The data were analysed by analysis of variance (ANOVA).
RESULTS:
The red staining of CXCR4 on immunofluorescence confocal microscopy predominantly overlapped with the green staining of Rab5 and Rab11A, and partly overlapped with Lamp1. It indicated that most CXCR4 molecules were located in early endosomes and recycling endosomes, and some were located in lysosomes. The PLA results revealed that the co-localizaiton of CXCR4 with endocytotic compartments could be observed in early endosomes, recycling endosomes and lysosomes. According to the results of flow cytometry, the proportion of SCAP that expressed CXCR4 on cell surface was as low as 0.13%±0.10%. After the inhibition of endocytosis by pretreating the cells with the following two inhibitors, Blebbistatin and Dynasore, the percentage of SCAP that positively expressed CXCR4 on cell surface was significantly increased to 13.34%±1.31% in Blebbistatin group and 4.03%±0.92% in Dynasore group (F=16.721, P<0.001). Moreover, the number of SCAP that expressed CXCR4 on cell surface in Blebbistatin group was significantly higher than that in Dynasore group (P<0.001).
CONCLUSION
The inhibition of endocytotic pathway could increase the number of SCAP that expressed CXCR4 on cell surface, and provide potency for the migration of SCAP.
Endocytosis
;
Endosomes
;
Lysosomes
;
Receptors, CXCR4
;
Stem Cells
6.Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism.
Sensen ZHANG ; Ningning LI ; Wenwen ZENG ; Ning GAO ; Maojun YANG
Protein & Cell 2017;8(11):834-847
TRPML1 channel is a non-selective group-2 transient receptor potential (TRP) channel with Ca permeability. Located mainly in late endosome and lysosome of all mammalian cell types, TRPML1 is indispensable in the processes of endocytosis, membrane trafficking, and lysosome biogenesis. Mutations of TRPML1 cause a severe lysosomal storage disorder called mucolipidosis type IV (MLIV). In the present study, we determined the cryo-electron microscopy (cryo-EM) structures of Mus musculus TRPML1 (mTRPML1) in lipid nanodiscs and Amphipols. Two distinct states of mTRPML1 in Amphipols are added to the closed state, on which could represent two different confirmations upon activation and regulation. The polycystin-mucolipin domain (PMD) may sense the luminal/extracellular stimuli and undergo a "move upward" motion during endocytosis, thus triggering the overall conformational change in TRPML1. Based on the structural comparisons, we propose TRPML1 is regulated by pH, Ca, and phosphoinositides in a combined manner so as to accommodate the dynamic endocytosis process.
Animals
;
Calcium
;
metabolism
;
Cryoelectron Microscopy
;
Endocytosis
;
Endosomes
;
metabolism
;
Gene Expression
;
HEK293 Cells
;
Humans
;
Hydrogen-Ion Concentration
;
Lysosomes
;
metabolism
;
Mice
;
Models, Biological
;
Mucolipidoses
;
genetics
;
metabolism
;
pathology
;
Nanostructures
;
chemistry
;
ultrastructure
;
Phosphatidylinositols
;
metabolism
;
Transgenes
;
Transient Receptor Potential Channels
;
chemistry
;
genetics
;
metabolism
7.Preparation and evaluation of doxorubicin hydrochloride liposomes modified by poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate.
Di ZHANG ; Jian-ying LI ; Xiao-chan WANG ; Hong-xin YUE ; Mei-na HU ; Xiu YU ; Huan XU
Acta Pharmaceutica Sinica 2015;50(9):1174-1179
In this study, the buffering capacity of amphiphilic pH-sensitivity copolymer poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (PEOZ-CHMC) was evaluated. The ammonium sulfate gradient method was used to prepare doxorubicin hydrochloride (DOX x HCl)-loaded liposomes (DOX-L), and then the post-insertion method was used to prepare PEOZ-CHMC and polyethylene glycol-distearoyl phosphatidyl ethanolamine (PEG-DSPE) modified DOX x HCl-loaded liposomes (PEOZ-DOX-L and PEG-DOX-L). The physico-chemical properties, in vitro drugs release behavior, cellular toxicity and intracellular delivery of liposomes were evaluated, separately. The results showed that PEOZ-CHMC has a satisfactory buffering capacity. The sephadex G-50 column centrifugation method and dynamic light scattering were used to determine the encapsulation efficiency (EE) and particle size of liposomes. The EE and particle size of DOX-L were (97.3 ± 1.4) % and 120 nm, respectively, and the addition of PEOZ-CHMC or PEG-DSPE had no influence on EE and particle size. The zeta potentials of three kinds of liposomes were negative. The release behavior of various DOX liposomes in vitro was investigated by dialysis method. In phosphate buffer solution (PBS) at pH 7.4, DOX x HCl was released from PEOZ-DOX-L in a sustained manner. While in PBS at pH 5.0, the release rate of DOX x HCl from PEOZ-DOX-L increased significantly, which suggested DOX x HCl was released from PEOZ-DOX-L in a pH-dependent manner. The intracellular delivery of liposomes was investigated by confocal laser scanning microscopy (CLSM). The CLSM images indicated that PEOZ-DOX-L showed efficient intracellular trafficking including endosomal escape and release DOX x HCl into nucleus, as well as the DOX-L and PEG-DOX-L had no this effect. The cytotoxicity of liposomes against MCF-7 cells was detected by using MTT assay. The results showed that antiproliferative effects of PEOZ-DOX-L enhanced with pH value decreased, whereas DOX-L and PEG-DOX-L did not have any significant difference in inhibitions at different pH conditions. Therefore, the problems of the inhibition of cellular uptake of liposomes and the failed endosomal escape of pH-sensitive liposomes by PEG chain can be overcome by the pH-sensitive liposomes constructed by PEOZ-CHMC.
Cell Nucleus
;
Doxorubicin
;
analogs & derivatives
;
chemistry
;
Endosomes
;
Formates
;
chemistry
;
Humans
;
Liposomes
;
chemistry
;
MCF-7 Cells
;
Microscopy, Confocal
;
Particle Size
;
Phosphatidylethanolamines
;
Polyamines
;
chemistry
;
Polyethylene Glycols
;
chemistry
8.ATP13A2/PARK9 Deficiency Neither Cause Lysosomal Impairment Nor Alter alpha-Synuclein Metabolism in SH-SY5Y Cells.
Eun Jin BAE ; Cheolsoon LEE ; He Jin LEE ; Seokjoong KIM ; Seung Jae LEE
Experimental Neurobiology 2014;23(4):365-371
Parkinson's disease is a multifactorial disorder with several genes linked to the familial types of the disease. ATP13A2 is one of those genes and encode for a transmembrane protein localized in lysosomes and late endosomes. Previous studies suggested the roles of this protein in lysosomal functions and cellular ion homeostasis. Here, we set out to investigate the role of ATP13A2 in lysosomal function and in metabolism of alpha-synuclein, another PD-linked protein whose accumulation is implicated in the pathogenesis. We generated non-sense mutations in both copies of ATP13A2 gene in SH-SY5Y human neuroblastoma cells. We examined lysosomal function of ATP13A2-/- cells by measuring the accumulation of lysosomal substrate proteins, such as p62 and polyubiquitinated proteins, induction of acidic compartments, and degradation of ectopically introduced dextran. None of these measures were altered by ATP13A2 deficiency. The steady-state levels of alpha-synuclein in cells or secretion of this protein were unaltered either in ATP13A2-/- compared to the normal cells. Therefore, the proposed roles of ATP13A2 in lysosomal functions may not be generalized and may depend on the cellular context. The ATP13A2-/- cells generated in the current study may provide a useful control for studies on the roles of PD genes in lysosomal functions.
alpha-Synuclein*
;
Dextrans
;
Endosomes
;
Homeostasis
;
Humans
;
Lysosomes
;
Metabolism*
;
Neuroblastoma
;
Parkinson Disease
;
Polyubiquitin
9.Progress in infection pathway and intracellular trafficking of adenovirus.
Wenfeng ZHANG ; Hongwei SHAO ; Hua HEL ; Shulin HUANG
Chinese Journal of Biotechnology 2014;30(6):864-874
The research on intracellular trafficking of adenovirus has been described mainly through observations of subgroup C adenoviruses in transformed cell lines. The basic elements of the trafficking pathway include binding to receptors at the cell surface, internalization by endocytosis, lysis of the endosomal membrane, escape to the cytosol, intracellular trafficking along microtubules, nuclear pore docking, and viral genome translocation into the nucleus. More than 80% of the adenovirus genome is delivered to the nucleus in a highly efficient manner in approximately 1 h. However, exceptions to this trafficking pattern have been noted, including: variations based on target cell type, cell physiology, and adenovirus serotype. This review summarizes mechanism of adenovirus infection pathway and intracellular trafficking, providinging a foundation for the development of clinical adenoviral vector.
Adenoviridae
;
physiology
;
Cell Membrane
;
virology
;
Cell Nucleus
;
virology
;
Cytoplasm
;
virology
;
Endocytosis
;
Endosomes
;
virology
;
Genetic Vectors
;
Humans
;
Microtubules
;
Virus Internalization
10.The strategies of endosomal escape for intracellular gene delivery.
Wen-Xi WANG ; Kai DAI ; Lu HONG ; Ting CAI ; Lan TANG
Acta Pharmaceutica Sinica 2014;49(8):1111-1116
The intracellular trafficking and subcellular distribution of exogenous gene is very important for gene delivery. A successful gene vehicle should overcome various barriers including endosomal membrane barriers to delivery gene to the target organelle. Traditional nonviral vehicle is unable to avoid endosomal pathway efficiently, so the efficiency of gene delivery is low and the application of gene drugs is limited. In order to achieve efficient nonviral gene delivery, a lot of researches based on endosomal escape have been carried out and some agents with the function of endsomal escape have been found. These agents facilitate the endsomal escape via various mechanisms, such as fusion into the lipid bilayer of endosomes, pore formation in the endosomal membrane, proton sponge effect and photochemical methods to rupture the endosomal membrane. In this review, various reported strategies for endsomal escape are described according to the escape mechanisms, and their applications in intracellular gene delivery are also discussed.
Cell Membrane
;
metabolism
;
Endosomes
;
metabolism
;
Gene Transfer Techniques
;
Genetic Therapy
;
Genetic Vectors
;
Humans

Result Analysis
Print
Save
E-mail