1.Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing.
Xiya ZHANG ; Tao LI ; Jianping OU ; Junjiu HUANG ; Puping LIANG
Protein & Cell 2022;13(5):316-335
Recent advances in genome editing, especially CRISPR-Cas nucleases, have revolutionized both laboratory research and clinical therapeutics. CRISPR-Cas nucleases, together with the DNA damage repair pathway in cells, enable both genetic diversification by classical non-homologous end joining (c-NHEJ) and precise genome modification by homology-based repair (HBR). Genome editing in zygotes is a convenient way to edit the germline, paving the way for animal disease model generation, as well as human embryo genome editing therapy for some life-threatening and incurable diseases. HBR efficiency is highly dependent on the DNA donor that is utilized as a repair template. Here, we review recent progress in improving CRISPR-Cas nuclease-induced HBR in mammalian embryos by designing a suitable DNA donor. Moreover, we want to provide a guide for producing animal disease models and correcting genetic mutations through CRISPR-Cas nuclease-induced HBR in mammalian embryos. Finally, we discuss recent developments in precise genome-modification technology based on the CRISPR-Cas system.
Animals
;
CRISPR-Cas Systems/genetics*
;
DNA/genetics*
;
Embryo, Mammalian/metabolism*
;
Endonucleases/metabolism*
;
Gene Editing
;
Mammals/metabolism*
2.Development of a CRISPR/Cpf1 gene editing system in silkworm Bombyx mori.
Zhanqi DONG ; Qi QIN ; Xinling ZHANG ; Kejie LI ; Peng CHEN ; Minhui PAN
Chinese Journal of Biotechnology 2021;37(12):4342-4350
The CRISPR/Cas9 gene editing system has been widely used in basic research, gene therapy and genetic engineering due to its high efficiency, fast speed and convenience. Meanwhile, the discovery of novel CRISPR/Cas systems in the microbial community also accelerated the emergence of novel gene editing tools. CRISPR/Cpf1 is the second type (V type) CRISPR system that can edit mammalian genome. Compared with the CRISPR/Cas9, CRISPR/Cpf1 can use 5'T-PAM rich region to increase the genome coverage, and has many advantages, such as sticky end of cleavage site and less homologous recombination repair. Here we constructed three CRISPR/Cpf1 (AsCpf1, FnCpf1 and LbCpf1) expression vectors in silkworm cells. We selected a highly conserved BmHSP60 gene and an ATPase family BmATAD3A gene to design the target gRNA, and constructed gHSP60-266 and gATAD3A-346 knockout vectors. The efficiency for editing the target genes BmATAD3A and BmHSP60 by AsCpf1, FnCpf1 and LbCpf1 were analyzed by T7E1 analysis and T-clone sequencing. Moreover, the effects of target gene knockout by different gene editing systems on the protein translation of BmHSP60 and BmATAD3A were analyzed by Western blotting. We demonstrate the CRISPR/Cpf1 gene editing system developed in this study could effectively edit the silkworm genome, thus providing a novel method for silkworm gene function research, genetic engineering and genetic breeding.
Animals
;
Bombyx/metabolism*
;
CRISPR-Cas Systems/genetics*
;
Endonucleases/genetics*
;
Gene Editing
;
RNA, Guide/genetics*
3.Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
Puping LIANG ; Hongwei SUN ; Ying SUN ; Xiya ZHANG ; Xiaowei XIE ; Jinran ZHANG ; Zhen ZHANG ; Yuxi CHEN ; Chenhui DING ; Yuanyan XIONG ; Wenbin MA ; Dan LIU ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2017;8(8):601-611
Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE) system built on cytidine (C) deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T) efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2), and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.
APOBEC-1 Deaminase
;
genetics
;
metabolism
;
Animals
;
Bacterial Proteins
;
genetics
;
metabolism
;
Base Sequence
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cytidine
;
genetics
;
metabolism
;
Embryo Transfer
;
Embryo, Mammalian
;
Endonucleases
;
genetics
;
metabolism
;
Gene Editing
;
methods
;
HEK293 Cells
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Microinjections
;
Plasmids
;
chemistry
;
metabolism
;
Point Mutation
;
RNA, Guide
;
genetics
;
metabolism
;
Thymidine
;
genetics
;
metabolism
;
Zygote
;
growth & development
;
metabolism
;
transplantation
4.Markerless DNA deletion based on Red recombination and in vivo I-Sec I endonuclease cleavage in Escherichia coli chromosome.
Meiqin ZHU ; Jian YU ; Changlin ZHOU ; Hongqing FANG
Chinese Journal of Biotechnology 2016;32(1):114-126
Red-based recombineering has been widely used in Escherichia coli genome modification through electroporating PCR fragments into electrocompetent cells to replace target sequences. Some mutations in the PCR fragments may be brought into the homologous regions near the target. To solve this problem in markeless gene deletion we developed a novel method characterized with two-step recombination and a donor plasmid. First, generated by PCR a linear DNA cassette which comprises a I-Sec I site-containing marker gene and homologous arms was electroporated into cells for marker-substitution deletion of the target sequence. Second, after a donor plasmid carrying the I-Sec I site-containing fusion homologous arm was chemically transformed into the marker-containing cells, the fusion arms and the marker was simultaneously cleaved by I-Sec I endonuclease and the marker-free deletion was stimulated by double-strand break-mediated intermolecular recombination. Eleven nonessential regions in E. coli DH1 genome were sequentially deleted by our method, resulting in a 10.59% reduced genome size. These precise deletions were also verified by PCR sequencing and genome resequencing. Though no change in the growth rate on the minimal medium, we found the genome-reduced strains have some alteration in the acid resistance and for the synthesis of lycopene.
Chromosomes, Bacterial
;
genetics
;
DNA
;
Endonucleases
;
metabolism
;
Escherichia coli
;
genetics
;
Genetic Engineering
;
methods
;
Recombination, Genetic
;
Sequence Deletion
5.Effect of Peimine on ERCC1 mRNA and LRP Expressions of A549/DDP Multidrug Resistance Cell Line.
Xiao-yong TANG ; Ying-xue TANG ; Peng XU ; Hai-yan ZHOU ; Li HAN
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(12):1490-1494
OBJECTIVETo explore the effect of peimine on excision repair cross-complementation 1 (ERCC1) mRNA and lung resistant protein (LRP) expressions in A549/cisplatin (DDP) multidrug resistance (MDR) cell line.
METHODSLung cancer A549/DDP cells were cultured in vitro.Cells at logarithmic growth phase were divided into 4 groups, i.e., the blank control group, the DDP group, the ligustrazine group (DDP+ligustrazine), the peimine group (DDP + peimine). After 48-h drug action, ERCC1 mRNA expression was detected by RT-PCR and LRP expression detected by cell immunofluorescence.
RESULTSThere was no statistical difference in expression levels of ERCC1 mRNA and LRP between the DDP group and the blank control group (P > 0.05). Compared with the DDP group, expression levels of ERCC1 mRNA and LRP obviously decreased in the ligustrazine group and the peimine group (P < 0.05). They were obviously lower in the peimine group than in the ligustrazine group (P < 0.05).
CONCLUSIONSPeimine could reverse MDR of A549/DDP cell line. Its mechanism might be associated with down-regulating ERCC1 mRNA and LRP expression levels.
Cell Line, Tumor ; Cevanes ; pharmacology ; Cisplatin ; DNA-Binding Proteins ; genetics ; Down-Regulation ; Drug Resistance, Multiple ; Drug Resistance, Neoplasm ; drug effects ; Endonucleases ; genetics ; Humans ; Low Density Lipoprotein Receptor-Related Protein-1 ; genetics ; Lung Neoplasms ; RNA, Messenger ; metabolism
6.Targeted exogenous EGFP gene editing in caprine fetus fibroblasts by zinc-finger nucleases.
Yuguo YUAN ; Baoli YU ; Shaozheng SONG ; Feng ZHOU ; Liqing ZHANG ; Yingying GU ; Minghui YU ; Yong CHENG
Chinese Journal of Biotechnology 2013;29(11):1573-1580
Gene knockout by ZFNs (zinc-finger nucleases) is efficient and specific, and successfully applied in more than 10 organisms. Currently, it is unclear whether this technology can be used for knocking-out enhanced green fluorescent protein (EGFP) gene in transgenic goats. Here we constructed and used ZFN-coding plasmids to produce genetic knockouts in the cells of cloned fetus produced from donor cells by microinjection of EGFP gene. Following introduced plasmids into caprine primary cultured fetus fibroblasts by electroporation, targeting of a transgene resulted in sequence mutation. Using the flow cytometric analysis, we confirmed the disappearance of EGFP expression in treated cells. Sequence from PCR products corresponding to targeted site showed that insertion of a G into the exon of EGFP resulted in frame shift mutation. These results suggest that ZFN-mediated gene targeting can apply to caprine fetus fibroblasts, which may open a unique avenue toward the creation of gene knockout goats combining with somatic cell nuclear transfer.
Animals
;
Base Sequence
;
Cloning, Organism
;
Electrophoresis
;
Endonucleases
;
genetics
;
metabolism
;
Fetus
;
Fibroblasts
;
metabolism
;
Gene Knockout Techniques
;
Gene Targeting
;
methods
;
Goats
;
Green Fluorescent Proteins
;
genetics
;
Molecular Sequence Data
;
Mutation
;
Zinc Fingers
7.Effect of TUBB3, TS and ERCC1 mRNA expression on chemoresponse and clinical outcome of advanced gastric cancer by multiplex branched-DNA liquid chip technology.
Jin HUANG ; Huabin HU ; Yangchun XIE ; Youhong TANG ; Wei LIU ; Meizuo ZHONG
Journal of Central South University(Medical Sciences) 2013;38(6):582-589
OBJECTIVE:
To analyze the impact of β-tubulin-III (TUBB3), thymidylate synthase (TS) and excision repair cross complementation group 1 (ERCC1) mRNA expression on chemoresponse and clinical outcome of patients with advanced gastric cancer treated with TXT/CDDP/FU (DCF) regimen chemotherapy.
METHODS:
The study population consisted of 48 patients with advanced gastric cancer. All patients were treated with DCF regimen palliative chemotherapy. The mRNA expressions of TUBB3, TS and ERCC1 of primary tumors were examined by multiplex branched-DNA liquid chip technology.
RESULTS:
The patients with low TUBB3 mRNA expression had higher response rate to chemotherapy than patients with high TUBB3 expression (P=0.011). There were no significant differences between response rate and TS or ERCC1 expression pattern. Median overall survival (OS) and median time to progression (TTP) were significantly longer in patients with low TUBB3 mRNA expression (P=0.002, P<0.001). TS or ERCC1 expression was not correlated with TTP and OS. In the combined analysis including TUBB3, TS and ERCC1, the patients with 0 or 1 high expression gene had better response rate, TTP and OS than the remaining patients (all P<0.001). Multivariate analysis revealed that ECOG (Eastern Cooperative Oncology Group)≥2 (HR=2.42, P=0.009) and TUBB3 (HR=2.34, P=0.036) mRNA expression significantly impacted on OS.
CONCLUSION
High TUBB3 mRNA expression is correlated with resistance to DCF regimen chemotherapy. TUBB3 might be a predictive and prognostic factor in patients with advanced gastric cancer treated with TXT-based chemotherapy. The combined evaluation of TUBB3, TS and ERCC1 expression can promote the individual treatment in advanced gastric cancer.
Antineoplastic Combined Chemotherapy Protocols
;
therapeutic use
;
Biomarkers, Tumor
;
metabolism
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Drug Resistance, Neoplasm
;
Endonucleases
;
genetics
;
metabolism
;
Humans
;
RNA, Messenger
;
genetics
;
metabolism
;
Stomach Neoplasms
;
drug therapy
;
genetics
;
Thymidylate Synthase
;
genetics
;
metabolism
;
Treatment Outcome
;
Tubulin
;
genetics
;
metabolism
8.Prokaryotic expression, purification and enzymatic properties of nuclease P1.
Yanan WANG ; Aiyun WEI ; Meiyan WANG ; Xiaobin WEI ; Chao ZHANG ; Liwei SHAN ; Sanhong FAN
Chinese Journal of Biotechnology 2012;28(11):1388-1397
To establish a prokaryotic expression and purification protocol for nuclease P1 (NP1), we first obtained a synthetic NP1 by splicing 22 oligonucleotides with overlapping PCR. We constructed and transformed a secretory expression vector pMAL-p4X-NP1 into Escherichia coli host strains T7 Express and Origami B (DE3) separately. Then, the recombinant NP1 was purified by amylose affinity chromatography, and its activity, thermo-stability and metal-ion dependence were investigated systematically. The results indicated that the expressed fusion proteins MBP-NP1 (Maltose binding protein-NP1) existed mainly in soluble form both in host strains T7 Express and Origami B (DE3), but the specific activity of recombinant protein from Origami B(DE3) strain was higher than T7 Express strain (75.48 U/mg : 51.50 U/mg). When the MBP-tag was cleaved by protease Factor Xa, the specific activity both increased up to 258.1 U/mg and 139.2 U/mg. The thermal inactivation experiments demonstrated that the recombinant NP1 was quite stable, and it retained more than 90% of original activity after incubated for 30 min at 80 degrees C. Zn2+ (2.0 mmol/L) could increase enzyme activity (to 119.1%), on the contrary, the enzyme activity was reduced by 2.0 mmol/L Cu2+ (to 63.12%). This research realized the functional expression of NP1 in the prokaryotic system for the first time, and provided an alternative pathway for NP1 preparation.
Cloning, Molecular
;
Enzyme Stability
;
Escherichia coli
;
genetics
;
metabolism
;
Fungal Proteins
;
biosynthesis
;
genetics
;
metabolism
;
Genes, Synthetic
;
Genetic Vectors
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
metabolism
;
Single-Strand Specific DNA and RNA Endonucleases
;
biosynthesis
;
genetics
;
metabolism
9.The mRNA expression of BRCA1, ERCC1, TUBB3, PRR13 genes and their relationship with clinical chemosensitivity in primary epithelial ovarian cancer.
Dan ZHAO ; Wei ZHANG ; Xiao-guang LI ; Xiao-bing WANG ; Mo LI ; Yan-fen LI ; Hai-mei TIAN ; Pei-pei SONG ; Jing LIU ; Qing-yun CHANG ; Ling-ying WU
Chinese Journal of Oncology 2012;34(3):196-200
OBJECTIVETo evaluate the expression of BRCA1, ERCC1, TUBB3 and PRR13 mRNA and their relationship with clinical chemosensitivity in primary ovarian cancer, and to assess the predictive value of joint detection of both BRCA1 and ERCC1 genes for the treatment of primary ovarian cancer.
METHODSPrimary epithelial ovarian tumor samples were collected from 46 patients who underwent cytoreductive surgery. Real-time quantitative PCR was used to analyze the relative expression of BRCA1, ERCC1, TUBB3 and PRR13 mRNA in those cases. The correlation of clinical chemosensitivity and the test results was statistically analyzed. The efficacy of the joint prediction of clinical chemosensitivity by combining the two drug resistance gene detection was evaluated.
RESULTSThe BRCA1 mRNA relative expression logarithm in the clinical-resistant group was 0.673±2.143, and clinical-sensitive group -1.436±2.594 (P=0.008). The ERCC1 mRNA relative expression logarithm in the clinical-resistant group was -0.529±1.982 and clinical-sensitive group -3.188±2.601 (P=0.001). BRCA1 and ERCC1 expression level is negatively correlated with platinum-based chemosensitivity. The PRR13 expressions in the two groups were not significantly different (P=0.074), and the TUBB3 expressions between the two groups were also not significantly different (P=0.619). When the intercept point value BRCA1 mRNA expression logarithm was -0.6, the predictive sensitivity, specificity, positive predictive value and negative predictive value were 73.3%, 75.0%, 84.6% and 60.0%, respectively, with the best comprehensive assessment. When the intercept point value of ERCC1 mRNA expression logarithm was -1, the predictive sensitivity, specificity, positive predictive value and negative predictive value were 80.0%, 68.8%, 82.8% and 64.7%, respectively, with the best comprehensive assessment. The combination detection of BRCA1 and ERCC1 can improve the chemotherapeutic sensitivity, specificity, positive predictive value and negative predictive value to 86.7%, 68.8%, 83.9% and 73.3%, respectively.
CONCLUSIONSBRCA1 and ERCC1 mRNA expression has a negative correlation with the clinical sensitivity of platinum-based chemotherapy. Combination detection of the two drug-resistance associated genes can improve the predictive efficacy of ovarian cancer chemosensitivity and beneficial to individual treatment of ovarian cancer.
Antineoplastic Combined Chemotherapy Protocols ; therapeutic use ; BRCA1 Protein ; genetics ; metabolism ; CA-125 Antigen ; blood ; Carboplatin ; administration & dosage ; DNA-Binding Proteins ; genetics ; metabolism ; Drug Resistance, Neoplasm ; Endonucleases ; genetics ; metabolism ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Neoplasms, Glandular and Epithelial ; drug therapy ; metabolism ; surgery ; Ovarian Neoplasms ; drug therapy ; metabolism ; surgery ; Paclitaxel ; administration & dosage ; RNA, Messenger ; metabolism ; Repressor Proteins ; genetics ; metabolism ; Tubulin ; genetics ; metabolism
10.The Expression of ERCC1, RRM1, and BRCA1 in Breast Cancer According to the Immunohistochemical Phenotypes.
Dokyung KIM ; Woohee JUNG ; Ja Seung KOO
Journal of Korean Medical Science 2011;26(3):352-359
We studied the expression of BRCA1, ERCC1, and RRM1 which play an important role in DNA repair systems in breast cancer. Immunohistochemical staining for EGFR, BRCA1, ERCC1, and RRM1 were performed by using a tissue microarray made from 230 breast cancer patients. Patients were classified into luminal A, luminal B, HER-2, and triple negative breast cancer (TNBC) types according to ER, PR, and HER-2 expression. The expression of ERCC1, RRM1, and BRCA1 were correlated (P < 0.05). The expression level of ERCC1 was the lowest in TNBC type (P = 0.031), ERCC1 negativity was more prominent in TNBC and luminal B groups than luminal A and HER-2 groups (P = 0.013). Cases with EGFR overexpression showed high expression of RRM1 and BRCA1 (P = 0.046, and 0.004, respectively). In conclusion, the expression of ERCC1 is particularly lower in TNBCs than other types of breast cancers.
Adult
;
BRCA1 Protein/*genetics/metabolism
;
Breast Neoplasms/*genetics/metabolism/pathology
;
DNA Repair
;
DNA-Binding Proteins/*genetics/metabolism
;
Disease-Free Survival
;
Endonucleases/*genetics/metabolism
;
Female
;
Gene Expression
;
Humans
;
Immunohistochemistry
;
Middle Aged
;
Phenotype
;
Prognosis
;
Protein Array Analysis
;
Receptor, Epidermal Growth Factor/genetics/metabolism
;
Tumor Markers, Biological/*genetics/metabolism
;
Tumor Suppressor Proteins/*genetics/metabolism

Result Analysis
Print
Save
E-mail