1.TREM-2 Drives Development of Multiple Sclerosis by Promoting Pathogenic Th17 Polarization.
Siying QU ; Shengfeng HU ; Huiting XU ; Yongjian WU ; Siqi MING ; Xiaoxia ZHAN ; Cheng WANG ; Xi HUANG
Neuroscience Bulletin 2024;40(1):17-34
Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease, mediated by pathogenic T helper 17 (Th17) cells. However, the therapeutic effect is accompanied by the fluctuation of the proportion and function of Th17 cells, which prompted us to find the key regulator of Th17 differentiation in MS. Here, we demonstrated that the triggering receptor expressed on myeloid cells 2 (TREM-2), a modulator of pattern recognition receptors on innate immune cells, was highly expressed on pathogenic CD4-positive T lymphocyte (CD4+ T) cells in both patients with MS and experimental autoimmune encephalomyelitis (EAE) mouse models. Conditional knockout of Trem-2 in CD4+ T cells significantly alleviated the disease activity and reduced Th17 cell infiltration, activation, differentiation, and inflammatory cytokine production and secretion in EAE mice. Furthermore, with Trem-2 knockout in vivo experiments and in vitro inhibitor assays, the TREM-2/zeta-chain associated protein kinase 70 (ZAP70)/signal transducer and activator of transcription 3 (STAT3) signal axis was essential for Th17 activation and differentiation in EAE progression. In conclusion, TREM-2 is a key regulator of pathogenic Th17 in EAE mice, and this sheds new light on the potential of this therapeutic target for MS.
Animals
;
Humans
;
Mice
;
CD4-Positive T-Lymphocytes/pathology*
;
Cell Differentiation
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Mice, Inbred C57BL
;
Multiple Sclerosis
;
Th1 Cells/pathology*
2.Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells.
Qing WANG ; Yang-Yang CHEN ; Zhi-Chao YANG ; Hai-Jun YUAN ; Yi-Wei DONG ; Qiang MIAO ; Yan-Qing LI ; Jing WANG ; Jie-Zhong YU ; Bao-Guo XIAO ; Cun-Gen MA
Chinese journal of integrative medicine 2023;29(5):394-404
OBJECTIVE:
To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action.
METHODS:
This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively.
RESULTS:
GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05).
CONCLUSION
GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.
Mice
;
Animals
;
Encephalomyelitis, Autoimmune, Experimental/pathology*
;
Grape Seed Extract/therapeutic use*
;
Interleukin-17
;
Interleukin-1beta
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Th1 Cells
;
Mice, Inbred C57BL
;
Interferon-gamma/therapeutic use*
;
Th17 Cells/metabolism*
;
Interleukin-12/therapeutic use*
;
Cytokines/metabolism*
3.Effect of Bushen Yisui Capsule () on oligodendrocyte lineage genes 1 and 2 in mice with experimental autoimmune encephalomyelitis.
Tao YANG ; Qi ZHENG ; Hui ZHAO ; Qiu-Xia ZHANG ; Ming LI ; Fang QI ; Kang-Ning LI ; Ling FANG ; Lei WANG ; Yong-Ping FAN
Chinese journal of integrative medicine 2016;22(12):932-940
OBJECTIVETo study the effects of Bushen Yisui Capsule (, BSYSC) on the oligodendrocyte lineage genes (Olig) 1 and Olig2 in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE) in order to explore the remyelination effect of BSYSC.
METHODSThe mice were randomly divided into normal control (NC), EAE model (EAE-M), prednisone acetate (PA, 6 mg/kg), BSYSC high-dose (3.02 g/kg) and BSYSC low-dose (1.51 g/kg) groups. The mice were induced by immunization with myelin oligodendrocyte glycoprotein (MOG) 35-55. The neurological function scores were assessed once daily. The pathological changes in mice brains were observed with hematoxylin-eosin (HE) staining and transmission electron microscope (TEM). The protein expressions of myelin basic protein (MBP), Olig1 and Olig2 in brains were measured by immunohistochemistry. The mRNA expressions of Olig1 and Olig 2 was also determined by quantitative real-time polymerase chain reaction.
RESULTSCompared with the EAE-M mice, (1) the neurological function scores were significantly decreased in BSYSC-treated mice on days 22 to 40 (P<0.01); (2) the inflammatory cells and demyelination in brains were reduced in BSYSC-treated EAE mice; (3) the protein expression of MBP was markedly increased in BSYSC-treated groups on day 18 and 40 respectively (P<0.05 or P<0.01); (4) the protein expression of Olig1 was increased in BSYSC (3.02 g/kg)-treated EAE mice on day 40 (P<0.01). Protein and mRNA expression of Olig2 was increased in BSYSC-treated EAE mice on day 18 and 40 (P<0.01).
CONCLUSIONThe effects of BSYSC on reducing demyelination and promoting remyelination might be associated with the increase of Olig1 and Olig2.
Animals ; Basic Helix-Loop-Helix Transcription Factors ; genetics ; metabolism ; Brain ; drug effects ; pathology ; ultrastructure ; Bromodeoxyuridine ; metabolism ; Capsules ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Encephalomyelitis, Autoimmune, Experimental ; drug therapy ; genetics ; pathology ; physiopathology ; Female ; Fluorescent Antibody Technique ; Mice, Inbred C57BL ; Myelin-Oligodendrocyte Glycoprotein ; metabolism ; Nerve Tissue Proteins ; genetics ; metabolism ; Oligodendrocyte Transcription Factor 2 ; RNA, Messenger ; genetics ; metabolism
4.Effects of Zuogui Pill () and Yougui Pill () on the expression of brain-derived neurotrophic factor and cyclic adenosine monophosphate/protein kinase A signaling transduction pathways of axonal regeneration in model rats with experimental autoimmune encephalomyelitis.
Yi-zhou WANG ; Shuang KOU ; Ling-yun GU ; Qi ZHENG ; Ming LI ; Fang QI ; Hui ZHAO ; Lei WANG
Chinese journal of integrative medicine 2014;20(1):24-30
OBJECTIVETo study the effects of Zuogui Pill (, ZGP) and Yougui Pill (, YGP) on the expressions of brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling of axonal regeneration in the Lewis rats with experimental autoimmune encephalomyelitis (EAE), in order to explore the possible mechanism of ZGP and YGP on promoting axonal regeneration.
METHODSThe rats were randomly divided into normal control (NC), model (MO), prednisone acetate (PA), ZGP and YGP groups. The EAE model of rat was established by injecting antigen containing myelin basic protein (MBP)68-86. The brain and spinal cord were harvested on the 14th and 28th day post-immunization (PI), the protein and mRNA expression of BDNF and PKA in the brain and spinal cord of rats were detected by Western blot analysis and real-time quantitative polymerase chain reaction (PCR), and the cAMP levels were detected by using enzyme-immunoassay method.
RESULTS(1) On the 28th day PI, the mRNA expression of BDNF in brain white matter and spinal cord of rats in ZGP and YGP groups were up-regulated, especially in YGP group (P<0.05 or P<0.01). (2) On the 14th day PI, the cAMP levels in brain white matters significantly increased in PA and YGP groups compared with MO group (P<0.05 or P<0.01), and the cAMP level in YGP group was higher than that in ZGP group (P<0.05). The cAMP level in spinal cord also significantly increased in YGP group compared with MO, PA and ZGP groups, respectively (P<0.01). (3) On the 14th day PI, the PKA expression in spinal cord of rats in ZGP group was significantly decreased compared with MO and YGP groups, respectively (P<0.05). (4) On the 28th day PI, there was a positive correlation between cAMP and PKA expression in the brain white matter of YGP rats.
CONCLUSIONSThe results suggest that ZGP and YGP may promote axonal regeneration by modulating cAMP/PKA signal transduction pathway, but the targets of molecular mechanism of ZGP may be different from those of YGP.
Animals ; Axons ; drug effects ; pathology ; Brain ; drug effects ; metabolism ; pathology ; Brain-Derived Neurotrophic Factor ; genetics ; metabolism ; Cyclic AMP ; metabolism ; Cyclic AMP-Dependent Protein Kinases ; genetics ; metabolism ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Encephalomyelitis, Autoimmune, Experimental ; drug therapy ; enzymology ; genetics ; Female ; Gene Expression Regulation ; drug effects ; Nerve Regeneration ; drug effects ; genetics ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Inbred Lew ; Signal Transduction ; drug effects ; genetics ; Spinal Cord ; drug effects ; metabolism ; pathology ; Tablets
5.Research on the mechanism of Zuogui Pill and Yougui Pill in promoting axonal regeneration in model rats of autoimmune encephalomyelitis.
Lei WANG ; Hui ZHAO ; Yong-ping FAN ; Hai-yang GONG ; Ming LI ; Fang QI ; Yan LIU
Chinese journal of integrative medicine 2010;16(2):167-172
OBJECTIVETo study the molecular mechanism of Zuogui Pill (ZGP) and Yougui Pill (YGP) on axonal regeneration in rats with experimental autoimmune encephalomyelitis (EAE).
METHODSEAE rat model was established by bilateral rear pedes subcutaneous injection of antigen made by mixing myelin basic protein (MBP) and complete Freud's adjuvant (CFA) in the volume ratio of 1:1. The pathological changes of axonal injury and regeneration in the brain and the spinal cord were observed on the 14th (the acute stage) and the 28th day (the remission stage) after modeling, with hematoxylin-eosin (HE) staining, silver stain, and immunohistochemical staining. The rats treated with prednisone acetate were taken as controls.
RESULTSObservation under the light microscope with HE staining showed a sleeve-like change in rats' cerebrospinal parenchyma with inflammatory cell infiltration around the small vessels and neuronic denaturation, while silver staining showed excessive tumefaction and abscission of axon, and immunohistochemical analysis showed decreasing of nerve growth factor (NGF) expression at the acute stage of EAE, which was even more remarkable at the remission stage, showing significant difference as compared with the normal control (P<0.05). And the expressions of Nogo A, an axon growth inhibitor, and its receptor (Nogo-66 receptor, Ng R) were significantly higher than those in the normal control at the acute stage (P<0.01). However, after the intervention of ZGP and YGP, the pathological changes and axon damage in rats' brain and spinal cord were much more alleviated, and the NGF expression was significantly higher than that in the model group at the acute stage (P<0.05). The expression of NGF was even stronger during the remission stage, and a better effect was shown by YGP. As for Nogo A and Ng R expressions, they were significantly lower than those in the model group at the acute stage (P<0.05), but a better effect was shown by ZGP.
CONCLUSIONSZGP and YGP can prevent axonal injury and promote the axonal regeneration in rats of EAE, and the possible mechanism is to increase the expression of NGF and reduce the expression of Nogo A and its receptor. However, some differences are observed between the two Chinese preparations in their acting times and points, which provides a certain basis for revealing the modern connotation of the Chinese medicine theory on tonifying Shen ()-yin and Shen-yang.
Animals ; Axons ; drug effects ; metabolism ; pathology ; physiology ; Brain ; drug effects ; metabolism ; pathology ; Disease Models, Animal ; Drug Evaluation, Preclinical ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; Encephalomyelitis, Autoimmune, Experimental ; drug therapy ; metabolism ; pathology ; GPI-Linked Proteins ; Male ; Myelin Proteins ; metabolism ; Nerve Growth Factor ; metabolism ; Nerve Regeneration ; drug effects ; Nogo Proteins ; Nogo Receptor 1 ; Rats ; Rats, Inbred Lew ; Receptors, Cell Surface ; Receptors, Peptide ; metabolism ; Research ; Signal Transduction ; drug effects ; Tablets
6.Therapeutic effect of a new recombinant immunotoxin mMIP-1alpha-DT390 on experimental autoimmune encephalomyelitis.
Mei-li LÜ ; Hong LI ; Wei-bo LIANG ; Wen-jie CHEN ; Yi JIA ; Ming-yuan LI ; Zhong-hua JIANG ; Lin ZHANG
Journal of Southern Medical University 2007;27(6):775-778
OBJECTIVETo evaluate the therapeutic effect of a new recombinant immunotoxin mMIP-1alpha-DT390 on experimental autoimmune encephalomyelitis (EAE).
METHODSEAE was induced in the low-sensitive strain C57BL/6 mice with intraperitoneal injection of myelin basic protein (MBP) to simulate the human disease multiple sclerosis, followed by intramuscular injection of cationic liposome carrying the plasmid DNA SRalpha-mMIP-1alpha-DT390 in the leg muscle to elicit resistance to EAE development. The mice were then examined daily for clinical signs of EAE by an observer blind to the treatment protocol. For immunohistochemistry the mice were anesthetized and perfused with sterile PBS and paraformaldehyde, and the cerebrum, cerebellum, medulla and spinal cord were removed for preparation of serial sections. The mononuclear cells (MNCs) from the EAE mouse spleens were prepared for three-color flow cytometry analysis of the surface markers with appropriate antibodies following the BD Pharmingen cytokine staining protocol.
RESULTSEAE model was successfully established by active MBP immunization in C57BL/6 mice. Administration of the immunotoxin mMIP-1alpha-DT390 significantly delayed the disease onset and lowered the mean clinical score for EAE as compared with the control mice. Immunohistochemistry demonstrated much less CCR5(+) infiltrating cells in the central nervous system in mMIP-1alpha-DT390-treated mice than in the control. The treatment also eliminated reactive T cells in the periphery blood without affecting the number of B cells.
CONCLUSIONThe immunotoxin mMIP-1alpha-DT390 can attenuate the disease activity of EAE in mice, suggesting its potential use in the treatment of other autoimmune disorders.
Animals ; Antigens, CD19 ; analysis ; B-Lymphocytes ; cytology ; metabolism ; CD3 Complex ; analysis ; Chemokine CCL3 ; genetics ; metabolism ; Diphtheria Toxin ; genetics ; metabolism ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental ; drug therapy ; Female ; Flow Cytometry ; Immunoglobulin Fragments ; genetics ; metabolism ; Immunohistochemistry ; Immunologic Factors ; therapeutic use ; Immunotoxins ; therapeutic use ; Meninges ; chemistry ; pathology ; Mice ; Mice, Inbred C57BL ; Multiple Sclerosis ; drug therapy ; NIH 3T3 Cells ; Receptors, CCR5 ; analysis ; Recombinant Fusion Proteins ; genetics ; metabolism ; therapeutic use ; T-Lymphocytes ; cytology ; metabolism
7.An expression plasmid encoding recombinant immunotoxin IP10-DT390 suppresses the experimental autoimmune encephalomyelitis.
Wenjie CHEN ; Hong LI ; Yi JIA ; Mingyan LI ; Zhonghua JIANG ; Meili LÜ ; Lin ZHANG
Journal of Biomedical Engineering 2007;24(5):1118-1122
Experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system (CNS); it serves as a model for the human multiple sclerosis (MS). In mice, EAE is mediated by T cells specific for various myelin basic proteins which migrate from the periphery to the CNS. In search of a way to prevent the induction and progression of EAE, we observed the effects of recombinant immunotoxin IP10-DT390 on blocking or eliminating the active T cells in the EAE model. In this paper is presented an experimental gene therapy-based model in which the mice were made resistant to EAE induction by plasmid DNA encoding recombinant immunotoxin that was injected into the leg muscles of mice. The new immuno-biological construct could selectively impair autoreactive T-cell homing while the duration of clinical signs is shorter, and the new construct would not affect other components of the immune response. These data demonstrated the effectiveness of the constructs in the treatment of EAE and suggested its usefulness in the treatment of other autoimmune diseases.
Animals
;
Chemokine CXCL10
;
biosynthesis
;
genetics
;
therapeutic use
;
Diphtheria Toxin
;
biosynthesis
;
genetics
;
therapeutic use
;
Encephalomyelitis, Autoimmune, Experimental
;
immunology
;
pathology
;
therapy
;
Female
;
Genetic Therapy
;
Immunoglobulin Fragments
;
biosynthesis
;
genetics
;
therapeutic use
;
Immunotoxins
;
genetics
;
metabolism
;
therapeutic use
;
Mice
;
Mice, Inbred C57BL
;
Receptors, CXCR3
;
metabolism
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
therapeutic use
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
therapeutic use
;
T-Lymphocytes
;
immunology
;
Transfection
8.Dynamic changes of heme oxygenase-1 protein and mRNA in the brains of rats with experimental allergic encephalomyelitis.
Guo-Jun TAN ; Yi-Fei ZHU ; Cui-Fang CAO ; Xiao-Yun ZHAO ; Chang-Sheng MA ; Tian-Zhu YANG
Acta Physiologica Sinica 2004;56(5):579-584
In order to investigate the role of heme oxygenase-1 (HO-1) in the molecular mechanism of experimental allergic encephalomyelitis (EAE), which was induced by guinea pig spinal cord homogenate + complete freund adjuvant on Wistar rats, we observed the gene of HO-1 and its protein expression with reverse transcriptase polymerase chain reaction(RT-PCR) and immunohistochemistry 1, 7, 14, and 21 d after EAE induction in rats. The relationship between HO-1 and the symptoms of EAE was also observed. The results showed that the levels of HO-1 mRNA and its protein expression were very low in the brains of the control group, whereas they were enhanced gradually with pathological course in the brain and onsets of symptoms, signs of EAE. On day 7, the level of HO-1 mRNA reached the peak, but the expression level of HO-1 protein in the brains reached the peak on day 14. The immunoreactive cells of HO-1 were mainly located at the choroid plexuses and subfornical organ (SFO), as well as in regions around the "sleeve-like" lesion foci, all of which were coincident with the locations of lesions of EAE. The levels of HO-1 mRNA and its protein expression were lowered gradually on day 21, which were in parallel with the severities of symptoms and signs of EAE. After a specific inhibitor of HO-1, Snpp-9, was applied, both of the symptoms and pathological lesions of EAE in the rat brains were mitigated markedly. Therefore, these results may suggest that the dynamic changes of HO-1 mRNA and its protein expression are in parallel with the changes of symptoms and pathological lesions of EAE in the brain. In conclusion, the levels of HO-1 mRNA and its protein expression in brains may play an important role in the pathogenesis of EAE, and application of inhibitors of HO-1 may be one of the potential therapeutic ways for the prevention and treatment of EAE.
Animals
;
Brain
;
enzymology
;
metabolism
;
Encephalomyelitis, Autoimmune, Experimental
;
enzymology
;
genetics
;
physiopathology
;
Female
;
Heme Oxygenase (Decyclizing)
;
biosynthesis
;
genetics
;
Heme Oxygenase-1
;
RNA, Messenger
;
biosynthesis
;
genetics
;
Rats
;
Rats, Wistar
;
Subfornical Organ
;
metabolism
;
pathology
9.Embryonic Intermediate Filaments, Nestin and Vimentin, Expression in the Spinal Cords of Rats with Experimental Autoimmune Encephalomyelitis.
Tae Kyun SHIN ; Yong Duk LEE ; Ki Bum SIM
Journal of Veterinary Science 2003;4(1):9-13
Intermediate filaments, including nestin and vimentin, are found in specific cell types in central nervous system (CNS) tissues, particularly immature glial cells and multipotent progenitor cells. In the present study, the expression patterns of nestin and vimentin in the spinal cords of rats with experimental autoimmune encephalomyelitis (EAE) and the response of cells containing filaments against acute autoimmune injury were examined by immunohistochemistry. Nestin immunostaining was only weakly detected in vascular endothelial cells but not in any cell types in the spinal cord in normal and adjuvant-immunized rats. At the peak stage of EAE, nestin-immunoreativity was recognized in some astrocytes in the gray matter and white matter. Vimentin was immunopositive in some astrocytes and macrophages in EAE lesions, while vimentin was normally detected in ependymal cells of central canals in the rat spinal cords.We postulate that normal animals may contain multipotent progenitor cells in the spinal cord parenchyma as well as in the subpial lesion and ependyma. Multipotent progenitor cells may activate to transform into necessary cells, including neurons, astrocytes or oligodendrocytes, depending on CNS needs. Appropriate control of progenitor cells in the injured CNS is an alternative choice for CNS remodeling.
Animals
;
Encephalomyelitis, Autoimmune, Experimental/*metabolism/pathology
;
*Gene Expression Regulation
;
Intermediate Filament Proteins/*metabolism
;
*Nerve Tissue Proteins
;
Rats
;
Rats, Inbred Lew
;
Spinal Cord/cytology/*metabolism/pathology
;
Stem Cells/cytology
;
Vimentin/*metabolism
10.Immunohistochemical Localization of Bcl-2 in the Spinal Cords of Rats with Experimental Autoimmune Encephalomyelitis.
Chang Jong MOON ; Yong Duk LEE ; Tae Kyun SHIN
Journal of Veterinary Science 2002;3(4):279-283
We examined the localization of the anti-apoptotic molecule Bcl-2 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis (EAE). Western blot analysis showed that Bcl-2 was constitutively expressed in normal spinal cords, and weakly increased in response to complete Freund's adjuvant(CFA) immunization. In EAE, with infiltration of inflammatory cells into spinal cords, Bcl-2 declined during the peak stage and further decreased during the recovery stage. Immunohistochemically, some neurons and glial cells constitutively expressed Bcl-2 in normal rat spinal cords. In the spinal cords of rats with EAE, Bcl-2 was also immunoreacted in some perivascular inflammatory cells while some brain cells, such as neurons and GFAP (+) astrocytes showed less Bcl-2 immunoreaction.These findings suggest that in EAE, Bcl-2 expression in the CNS host cells decreases with CNS inflammation, possibly progressing to cell death in some cases, while the survival of host cells, including neurons, astrocytes, and some inflammatory cells, is associated with activation of the anti-apoptotic molecule Bcl-2. Taking all into considerations, its is postulated that Bcl-2 either beneficially or detrimentally functions in some host cells depending on the activation stage of each cell type.
Animals
;
Blotting, Western
;
DNA Fragmentation/physiology
;
Encephalomyelitis, Autoimmune, Experimental/*metabolism/pathology
;
Female
;
Immunohistochemistry
;
In Situ Nick-End Labeling
;
Male
;
Proto-Oncogene Proteins c-bcl-2/*metabolism
;
Rats
;
Rats, Inbred Lew
;
Spinal Cord/*metabolism

Result Analysis
Print
Save
E-mail