1.Implicit, But Not Explicit, Emotion Regulation Relieves Unpleasant Neural Responses Evoked by High-Intensity Negative Images.
Yueyao ZHANG ; Sijin LI ; Kexiang GAO ; Yiwei LI ; Jiajin YUAN ; Dandan ZHANG
Neuroscience Bulletin 2023;39(8):1278-1288
Evidence suggests that explicit reappraisal has limited regulatory effects on high-intensity emotions, mainly due to the depletion of cognitive resources occupied by the high-intensity emotional stimulus itself. The implicit form of reappraisal has proved to be resource-saving and therefore might be an ideal strategy to achieve the desired regulatory effect in high-intensity situations. In this study, we explored the regulatory effect of explicit and implicit reappraisal when participants encountered low- and high-intensity negative images. The subjective emotional rating indicated that both explicit and implicit reappraisal down-regulated negative experiences, irrespective of intensity. However, the amplitude of the parietal late positive potential (LPP; a neural index of experienced emotional intensity) showed that only implicit reappraisal had significant regulatory effects in the high-intensity context, though both explicit and implicit reappraisal successfully reduced the emotional neural responses elicited by low-intensity negative images. Meanwhile, implicit reappraisal led to a smaller frontal LPP amplitude (an index of cognitive cost) compared to explicit reappraisal, indicating that the implementation of implicit reappraisal consumes limited cognitive control resources. Furthermore, we found a prolonged effect of implicit emotion regulation introduced by training procedures. Taken together, these findings not only reveal that implicit reappraisal is suitable to relieve high-intensity negative experiences as well as neural responses, but also highlight the potential benefit of trained implicit regulation in clinical populations whose frontal control resources are limited.
Humans
;
Emotional Regulation
;
Electroencephalography
;
Evoked Potentials/physiology*
;
Cognition/physiology*
;
Emotions/physiology*
2.The Emotion-Regulation Benefits of Implicit Reappraisal in Clinical Depression: Behavioral and Electrophysiological Evidence.
Jiajin YUAN ; Yueyao ZHANG ; Yanli ZHAO ; Kexiang GAO ; Shuping TAN ; Dandan ZHANG
Neuroscience Bulletin 2023;39(6):973-983
Major depressive disorder (MDD) is characterized by emotion dysregulation. Whether implicit emotion regulation can compensate for this deficit remains unknown. In this study, we recruited 159 subjects who were healthy controls, had subclinical depression, or had MDD, and examined them under baseline, implicit, and explicit reappraisal conditions. Explicit reappraisal led to the most negative feelings and the largest parietal late positive potential (parietal LPP, an index of emotion intensity) in the MDD group compared to the other two groups; the group difference was absent under the other two conditions. MDD patients showed larger regulatory effects in the LPP during implicit than explicit reappraisal, whereas healthy controls showed a reversed pattern. Furthermore, the frontal P3, an index of voluntary cognitive control, showed larger amplitudes in explicit reappraisal compared to baseline in the healthy and subclinical groups, but not in the MDD group, while implicit reappraisal did not increase P3 across groups. These findings suggest that implicit reappraisal is beneficial for clinical depression.
Humans
;
Depressive Disorder, Major/psychology*
;
Emotional Regulation
;
Depression
;
Emotions/physiology*
;
Cognition/physiology*
3.Control of Emotion and Wakefulness by Neurotensinergic Neurons in the Parabrachial Nucleus.
Jingwen CHEN ; Noam GANNOT ; Xingyu LI ; Rongrong ZHU ; Chao ZHANG ; Peng LI
Neuroscience Bulletin 2023;39(4):589-601
The parabrachial nucleus (PBN) integrates interoceptive and exteroceptive information to control various behavioral and physiological processes including breathing, emotion, and sleep/wake regulation through the neural circuits that connect to the forebrain and the brainstem. However, the precise identity and function of distinct PBN subpopulations are still largely unknown. Here, we leveraged molecular characterization, retrograde tracing, optogenetics, chemogenetics, and electrocortical recording approaches to identify a small subpopulation of neurotensin-expressing neurons in the PBN that largely project to the emotional control regions in the forebrain, rather than the medulla. Their activation induces freezing and anxiety-like behaviors, which in turn result in tachypnea. In addition, optogenetic and chemogenetic manipulations of these neurons revealed their function in promoting wakefulness and maintaining sleep architecture. We propose that these neurons comprise a PBN subpopulation with specific gene expression, connectivity, and function, which play essential roles in behavioral and physiological regulation.
Parabrachial Nucleus/physiology*
;
Wakefulness/physiology*
;
Neurons/physiology*
;
Emotions
;
Sleep
4.Electrophysiological characteristics of emotion arousal difference between stereoscopic and non-stereoscopic virtual reality films.
Feng TIAN ; Wenrui ZHANG ; Yingjie LI
Journal of Biomedical Engineering 2022;39(1):56-66
There are two modes to display panoramic movies in virtual reality (VR) environment: non-stereoscopic mode (2D) and stereoscopic mode (3D). It has not been fully studied whether there are differences in the activation effect between these two continuous display modes on emotional arousal and what characteristics of the related neural activity are. In this paper, we designed a cognitive psychology experiment in order to compare the effects of VR-2D and VR-3D on emotional arousal by analyzing synchronously collected scalp electroencephalogram signals. We used support vector machine (SVM) to verify the neurophysiological differences between the two modes in VR environment. The results showed that compared with VR-2D films, VR-3D films evoked significantly higher electroencephalogram (EEG) power (mainly reflected in α and β activities). The significantly improved β wave power in VR-3D mode showed that 3D vision brought more intense cortical activity, which might lead to higher arousal. At the same time, the more intense α activity in the occipital region of the brain also suggested that VR-3D films might cause higher visual fatigue. By the means of neurocinematics, this paper demonstrates that EEG activity can well reflect the effects of different vision modes on the characteristics of the viewers' neural activities. The current study provides theoretical support not only for the future exploration of the image language under the VR perspective, but for future VR film shooting methods and human emotion research.
Arousal
;
Electroencephalography
;
Emotions/physiology*
;
Humans
;
Motion Pictures
;
Virtual Reality
5.A study on the effect evaluation of virtual reality on workplace employees' emotional optimization.
Lu Fang ZHANG ; Xia LIU ; Jia Long MA ; Zhi Chuan TANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(3):188-191
Objective: To explore the effect of emotional optimization of workplace employees in immersive virtual natural environment. Methods: In July 2020, 15 subjects were selected to complete two groups of treadmill walking training experiments in virtual natural environment and daily environment respectively. At the same time, the subjects' skin electrical (EDA) , pulse frequency (Pf) , respiratory frequency (Rf) physiological data and Self-Assessment Manikin (SAM) data before and after walking were collected; the mean value of three dimensions of SAM and the emotion difference before and after the experiment were calculated. The differences of physiological indexes and subjective mood changes of subjects were tested by paired sample t-test. Results: Compared with the daily environment, the ΔEDA, ΔPf and ΔRf of the subjects in the virtual natural environment were all decreased , and the differences were statistically significant (P<0.05). There were statistically significant differences in pleasure and arousal between subjects before and after using the virtual natural environment (P <0.05). Compared with the daily environment, the Δpleasure degree of subjects using the virtual natural environment increased, and the Δarousal degree and Δdominance degree decreased, and the differences were statistically significant (P <0.05). Conclusion: Walking in virtual natural environment can help subjects improve their mood, relax and improve the regulation ability of autonomic nervous system.
Arousal
;
Emotions/physiology*
;
Heart Rate
;
Humans
;
Virtual Reality
;
Workplace
6.Corticotrophin-releasing hormone neurons in the central amygdala mediate morphine withdrawal-induced negative emotions.
Xue-Ying WANG ; Min YU ; Lan MA ; Fei-Fei WANG ; Chang-You JIANG
Acta Physiologica Sinica 2019;71(6):824-832
Drugs of abuse leads to adaptive changes in the brain stress system, and produces negative affective states including aversion and anxiety after drug use is terminated. Corticotrophin-releasing hormone (CRH) is the main transmitter in control of response to stressors and is neuronal enriched in the central amygdala (CeA), a sub-region of the extended amygdala playing an important role in integrating emotional information and modulating stress response. The effect of CRH neurons in CeA on the negative emotions on morphine naïve and withdrawal mice is unclear. Thus, we utilized CRH-Cre transgenic mice injected with AAV-mediated Designer Receptors Exclusively Activated By Designer Drugs (DREADDs) to chemogenetically manipulate CRH neurons in CeA. And methods of behavior analysis, including conditioned place aversion (CPA), elevated plus maze and locomotor activity tests, were used to investigate morphine withdrawal-induced negative emotions in mice. The results showed that, inhibiting CRH neurons of CeA decreased the formation of morphine withdrawal-induced CPA, as well as the anxiety level of CRH-Cre mice. Furthermore, specifically activating CRH neurons in CeA evoked CPA and anxiety of morphine naïve mice. Neither inhibiting nor activating CRH neurons had effects on their locomotor activity. These results suggest that CRH neurons in CeA are involved in the mediation of morphine withdrawal-induced negative emotion in mice, providing a theoretical basis for drug addiction and relapse mechanism.
Adrenocorticotropic Hormone
;
Animals
;
Central Amygdaloid Nucleus
;
Corticotropin-Releasing Hormone
;
metabolism
;
Emotions
;
physiology
;
Mice
;
Morphine
;
metabolism
;
Neurons
;
metabolism
7.Processing mechanism of social cues in faces.
Qian ZHU ; Hui KOU ; Tai-Yong BI
Acta Physiologica Sinica 2019;71(1):73-85
The purpose of the present paper was to review the processing mechanisms of social cues in faces. We summarized researches relative to social cues in faces and discussed the processing mechanism of these cues from the aspects of facial expression, facial attractiveness, gaze and face direction, and lipreading. First, we discussed the general neural mechanism of face information processing and summarized the functions of face areas in the fusiform gyrus, posterior superior temporal sulcus and inferior occipital gyrus. Next, the neural mechanism of emotional face perception was discussed. The processing of emotional faces consists of encodings of perceptual and emotional components. The amygdala plays an important role in the emotional processing of facial expressions. Furthermore, the neural responses to facial expressions may be influenced by multiple factors, such as the type of emotion, the dynamic presentation of the face and the consciousness of facial expressions. With respect to facial attractiveness processing, studies has shown that the reward circuitry is activated by highly attractive faces. However, the influence of facial attractiveness on neural responses remains elusive. It is proposed that the neural responses to facial attractiveness might be modulated by factors such as the task, observer's sex, expectation and other social cues in faces. Eye gaze perception and face view perception are related to visual attention, and the relevant neural circuitry has been found to include attention-related areas, such as the intraparietal sulcus. Finally, research on lipreading reveals its important role in language perception. The auditory cortex and language-related cortex have been shown to be activated by lipreading. In summary, the present evidence may support facial information processing theory. However, the theory could be further improved based on present and future findings. Furthermore, we discussed the deficits in the processing of social cues in individuals with mental disorders and proposed future research directions in this field.
Brain Mapping
;
Cues
;
Emotions
;
Facial Expression
;
Humans
;
Magnetic Resonance Imaging
;
Temporal Lobe
;
physiology
8.Characteristics of facial expression recognition ability in patients with Lewy body disease.
Yuriko KOJIMA ; Tomohiro KUMAGAI ; Tomoo HIDAKA ; Takeyasu KAKAMU ; Shota ENDO ; Yayoi MORI ; Tadashi TSUKAMOTO ; Takashi SAKAMOTO ; Miho MURATA ; Takehito HAYAKAWA ; Tetsuhito FUKUSHIMA
Environmental Health and Preventive Medicine 2018;23(1):32-32
BACKGROUND:
The facial expression of medical staff has been known to greatly affect the psychological state of patients, making them feel uneasy or conversely, cheering them up. By clarifying the characteristics of facial expression recognition ability in patients with Lewy body disease, the aim of this study is to examine points to facilitate smooth communication between caregivers and patients with the disease whose cognitive function has deteriorated.
METHODS:
During the period from March 2016 to July 2017, we examined the characteristics of recognition of the six facial expressions of "happiness," "sadness," "fear," "anger," "surprise," and "disgust" for 107 people aged 60 years or more, both outpatient and inpatient, who hospital specialists had diagnosed with Lewy body diseases of Parkinson's disease, Parkinson's disease with dementia, and dementia with Lewy bodies. Based on facial expression recognition test results, we classified them by cluster analysis and clarified features of each type.
RESULTS:
In patients with Lewy body disease, happiness was kept unaffected by aging, age of onset, duration of the disease, cognitive function, and apathy; however, recognizing the facial expression of fear was difficult. In addition, due to aging, cognitive decline, and apathy, the facial expression recognition ability for sadness and anger decreased. In particular, cognitive decline reduced recognition of all of the facial expressions except for happiness. The test accuracy rates were classified into three types using the cluster analysis: "stable type," "mixed type," and "reduced type". In the "reduced type", the overall facial recognition ability declined except happiness, and in the mixed type, recognition ability of anger particularly declined.
CONCLUSION
There were several facial expressions that the Lewy body disease patients were unable to accurately identify. Caregivers are recommended to make an effort to compensate for such situations with language or body contact, etc., as a way to convey correct feeling to the patients of each type.
Aged
;
Aged, 80 and over
;
Cluster Analysis
;
Cognition
;
physiology
;
Emotions
;
Facial Expression
;
Facial Recognition
;
physiology
;
Female
;
Humans
;
Lewy Body Disease
;
physiopathology
;
psychology
;
Male
;
Middle Aged
9.Anodal Transcranial Direct-Current Stimulation Over the Right Dorsolateral Prefrontal Cortex Influences Emotional Face Perception.
Li-Chuan YANG ; Ping REN ; Yuan-Ye MA
Neuroscience Bulletin 2018;34(5):842-848
The dorsolateral prefrontal cortex (DLPFC) is considered to play a crucial role in many high-level functions, such as cognitive control and emotional regulation. Many studies have reported that the DLPFC can be activated during the processing of emotional information in tasks requiring working memory. However, it is still not clear whether modulating the activity of the DLPFC influences emotional perception in a detection task. In the present study, using transcranial direct-current stimulation (tDCS), we investigated (1) whether modulating the right DLPFC influences emotional face processing in a detection task, and (2) whether the DLPFC plays equal roles in processing positive and negative emotional faces. The results showed that anodal tDCS over the right DLPFC specifically facilitated the perception of positive faces, but did not influence the processing of negative faces. In addition, anodal tDCS over the right primary visual cortex enhanced performance in the detection task regardless of emotional valence. Our findings suggest, for the first time, that modulating the right DLPFC influences emotional face perception, especially faces showing positive emotion.
Adult
;
Emotions
;
Facial Recognition
;
physiology
;
Female
;
Humans
;
Male
;
Neuropsychological Tests
;
Prefrontal Cortex
;
physiology
;
Social Perception
;
Transcranial Direct Current Stimulation
;
Young Adult
10.Facial Expression Enhances Emotion Perception Compared to Vocal Prosody: Behavioral and fMRI Studies.
Heming ZHANG ; Xuhai CHEN ; Shengdong CHEN ; Yansong LI ; Changming CHEN ; Quanshan LONG ; Jiajin YUAN
Neuroscience Bulletin 2018;34(5):801-815
Facial and vocal expressions are essential modalities mediating the perception of emotion and social communication. Nonetheless, currently little is known about how emotion perception and its neural substrates differ across facial expression and vocal prosody. To clarify this issue, functional MRI scans were acquired in Study 1, in which participants were asked to discriminate the valence of emotional expression (angry, happy or neutral) from facial, vocal, or bimodal stimuli. In Study 2, we used an affective priming task (unimodal materials as primers and bimodal materials as target) and participants were asked to rate the intensity, valence, and arousal of the targets. Study 1 showed higher accuracy and shorter response latencies in the facial than in the vocal modality for a happy expression. Whole-brain analysis showed enhanced activation during facial compared to vocal emotions in the inferior temporal-occipital regions. Region of interest analysis showed a higher percentage signal change for facial than for vocal anger in the superior temporal sulcus. Study 2 showed that facial relative to vocal priming of anger had a greater influence on perceived emotion for bimodal targets, irrespective of the target valence. These findings suggest that facial expression is associated with enhanced emotion perception compared to equivalent vocal prosodies.
Adult
;
Brain Mapping
;
methods
;
Cerebral Cortex
;
diagnostic imaging
;
physiology
;
Emotions
;
physiology
;
Facial Expression
;
Facial Recognition
;
physiology
;
Female
;
Humans
;
Magnetic Resonance Imaging
;
Psychomotor Performance
;
physiology
;
Social Perception
;
Speech Perception
;
physiology
;
Young Adult

Result Analysis
Print
Save
E-mail