1.Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration.
Li-Ning SU ; Xiao-Qing SONG ; Zhan-Xia XUE ; Chen-Qing ZHENG ; Hai-Feng YIN ; Hui-Ping WEI
Journal of Zhejiang University. Science. B 2018;19(4):293-304
		                        		
		                        			
		                        			Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, the regulatory networks involved have not been fully elucidated. In the present study, we analyzed a regulatory network of 51 miRNAs, 27 TFs, and 59 target genes, which is involved in axon regeneration. We identified 359 pairs of feed-forward loops (FFLs), seven important genes (Nap1l1, Arhgef12, Sema6d, Akt3, Trim2, Rab11fip2, and Rps6ka3), six important miRNAs (hsa-miR-204-5p, hsa-miR-124-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-15b-5p), and eight important TFs (Smada2, Fli1, Wt1, Sp6, Sp3, Smad4, Smad5, and Creb1), which appear to play an important role in axon regeneration. Functional enrichment analysis revealed that axon-associated genes are involved mainly in the regulation of cellular component organization, axonogenesis, and cell morphogenesis during neuronal differentiation. However, these findings need to be validated by further studies.
		                        		
		                        		
		                        		
		                        			Axons/physiology*
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cluster Analysis
		                        			;
		                        		
		                        			Embryonic Stem Cells/cytology*
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Gene Regulatory Networks
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Nerve Regeneration
		                        			;
		                        		
		                        			Neurons/metabolism*
		                        			;
		                        		
		                        			Software
		                        			;
		                        		
		                        			Transcription Factors/metabolism*
		                        			
		                        		
		                        	
2.Progress in studies on the role of β-catenin in regulating the self-renewal and pluripotency of embryonic stem cells.
Yang WANG ; Xingxiang DUAN ; Juan YU ; Yi SUN
Journal of Central South University(Medical Sciences) 2016;41(2):206-211
		                        		
		                        			
		                        			Embryonic stem cells (ESCs) is one of the best cell types for regenerative medicine. It is derived from inner cell mass of the blastocyst stage and characterized by self-renewal and pluripotency, which are regulated by kinds of signal molecules, such as the Wnt/β-catenin signaling pathway. β-catenin is a multifunctional protein and plays a key role in Wnt/β-catenin signaling pathway. β-catenin involves self-renewal of ESCs and promotes the differentiation of ESCs into three primary germ layers in space and time. Elucidating the mechanisms of β-catenin in regulating the self-renewal and pluripotency of ESCs will pave the way to use it in research and application.
		                        		
		                        		
		                        		
		                        			Blastocyst
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Embryonic Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Wnt Signaling Pathway
		                        			;
		                        		
		                        			beta Catenin
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
3.Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation.
Xiaoying CHEN ; Kunshan ZHANG ; Liqiang ZHOU ; Xinpei GAO ; Junbang WANG ; Yinan YAO ; Fei HE ; Yuping LUO ; Yongchun YU ; Siguang LI ; Liming CHENG ; Yi E SUN
Protein & Cell 2016;7(3):175-186
		                        		
		                        			
		                        			The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry properties possible. Here we report success in performing both electrophysiological and whole-genome transcriptome analyses on single human neurons in culture. Using Weighted Gene Coexpression Network Analyses (WGCNA), we identified gene clusters highly correlated with neuronal maturation judged by electrophysiological characteristics. A tight link between neuronal maturation and genes involved in ubiquitination and mitochondrial function was revealed. Moreover, we identified a list of candidate genes, which could potentially serve as biomarkers for neuronal maturation. Coupled electrophysiological recording and single cell transcriptome analysis will serve as powerful tools in the future to unveil molecular logics for neural circuitry functions.
		                        		
		                        		
		                        		
		                        			Antigens, Differentiation
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Electrophysiological Phenomena
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Genome-Wide Association Study
		                        			;
		                        		
		                        			Human Embryonic Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Induced Pluripotent Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Multigene Family
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transcriptome
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
4.Research Progress on the Development and Regulation of Embryonic Hematopoietic Stem Cells.
Journal of Biomedical Engineering 2015;32(5):1141-1145
		                        		
		                        			
		                        			Hematopoietic stem cells (HSCs) are tissue specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Recently, people have learned a lot about the embryonic HSCs on their development and homing. During their differentiation, HSCs are regulated by the transcription factors, such as Runx1 and Notch signaling pathway, etc. MicroRNAs also regulate the self-renewal and differentiation of hematopoietic stem/progenitor cells on the post-transcriptional levels. Since the onset of circulation, the formation of HSCs and their differentiation into blood cells, especially red blood cells, are regulated by the hemodynamic forces. It would be of great significance if we could treat hematologic diseases with induced HSCs in vitro on the basis of fully understanding of hemotopoietic stem cell development. This review is focused on the advances in the research of HSCs' development and regulation.
		                        		
		                        		
		                        		
		                        			Blood Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Embryonic Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Hematopoietic Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Transcription Factors
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
5.Enhancing effects of serum-rich and cytokine-supplemented culture conditions on developing blastocysts and deriving porcine parthenogenetic embryonic stem cells.
Soo Kyung JUNG ; Hyun Jung KIM ; Chan Lan KIM ; Joo Hyeong LEE ; Jin Young YOU ; Eun Song LEE ; Jeong Mook LIM ; Seon Jong YUN ; Jae Young SONG ; Sang Ho CHA
Journal of Veterinary Science 2014;15(4):519-528
		                        		
		                        			
		                        			The present study was conducted to develop an effective method for establishment of porcine parthenogenetic embryonic stem cells (ppESCs) from parthenogenetically activated oocyte-derived blastocysts. The addition of 10% fetal bovine serum (FBS) to the medium on the 3rd day of oocyte culturing improved the development of blastocysts, attachment of inner cell masses (ICMs) onto feeder cells, and formation of primitive ppESC colonies. ICM attachment was further enhanced by basic fibroblast growth factor, stem cell factor, and leukemia inhibitory factor. From these attached ICMs, seven ppESC lines were established. ppESC pluripotency was verified by strong enzymatic alkaline phosphatase activity and the expression of pluripotent markers OCT3/4, Nanog, and SSEA4. Moreover, the ppESCs were induced to form an embryoid body and teratoma. Differentiation into three germ layers (ectoderm, mesoderm, and endoderm) was confirmed by the expression of specific markers for the layers and histological analysis. In conclusion, data from the present study suggested that our modified culture conditions using FBS and cytokines are highly useful for improving the generation of pluripotent ppESCs.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blastocyst/*cytology
		                        			;
		                        		
		                        			Cell Culture Techniques/*veterinary
		                        			;
		                        		
		                        			*Cell Differentiation
		                        			;
		                        		
		                        			Cytokines/metabolism
		                        			;
		                        		
		                        			Embryonic Stem Cells/*cytology
		                        			;
		                        		
		                        			Parthenogenesis
		                        			;
		                        		
		                        			Pluripotent Stem Cells/*cytology
		                        			;
		                        		
		                        			Swine/*physiology
		                        			
		                        		
		                        	
6.Progress on PI3K/Akt signaling pathway regulating self-renewal and pluripotency of embryonic stem cells.
Meng-Meng YIN ; Yu-Rong CUI ; Lu WANG ; Jia-Yu WANG ; Ying GAO ; Jiao-Ya XI
Acta Physiologica Sinica 2014;66(2):223-230
		                        		
		                        			
		                        			The phosphatidylinositol 3-kinase (PI3K) and its downstream target protein kinase B (Akt/PKB) can be activated by a variety of extracellular and intracellular signals. They are important signaling molecules and key survival factors involved in cell proliferation, differentiation, apoptosis and other cellular processes. Recently, many reports demonstrate that type I PI3K/Akt signaling pathway plays an important role in maintenance of self-renewal and pluripotency of embryonic stem (ES) cells. Further studies with regard to the self-renewal and pluripotency of ES cells and underlying molecular mechanisms are crucial to its application in cell replacement therapy, regenerative medicine and tissue engineering. The present review focuses on the recent progress on the mediation of PI3K/Akt signaling pathway on the maintenance of self-renewal and pluripotency of ES cells.
		                        		
		                        		
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Embryonic Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Pluripotent Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
7.Mouse A6-positive hepatic oval cells derived from embryonic stem cells.
Dong-zhi YIN ; Ji-ye CAI ; Qi-chang ZHENG ; Zheng-wei CHEN ; Jing-xian ZHAO ; You-neng YUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):1-9
		                        		
		                        			
		                        			Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were used to induce differentiation of mouse embryonic stem (ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group (up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antigens, CD34
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Antigens, Ly
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Embryonic Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			ultrastructure
		                        			;
		                        		
		                        			Epidermal Growth Factor
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Flow Cytometry
		                        			;
		                        		
		                        			Gene Expression Regulation, Developmental
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Hepatocyte Growth Factor
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Membrane Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Microfilament Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Microscopy, Atomic Force
		                        			;
		                        		
		                        			Microscopy, Electron, Transmission
		                        			;
		                        		
		                        			Reverse Transcriptase Polymerase Chain Reaction
		                        			;
		                        		
		                        			Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			ultrastructure
		                        			;
		                        		
		                        			Time Factors
		                        			
		                        		
		                        	
8.Effect of LMO2 overexpression in hemangioblast on its proliferation and hematopoietic differentiation.
Hai-sheng ZHOU ; Chun LI ; Xiao-jun ZHA ; Bing CHEN ; De-pei LIU
Acta Academiae Medicinae Sinicae 2013;35(2):177-184
OBJECTIVETo investigate function of the Lim-only protein(LMO2) in hemangioblast generated from murine embryonic stem cells differentiation to hematopoietic cells.
METHODSThe hemangioblast-specific expression vector with lmo2 or green fluorescence protein gene was constructed, respectively. The murine embryonic stem cells were transfected by the hemangioblast-specific expression vectors. The neomycin-resistance ES cell clones were obtained after having been screened by G418. The cell clones were spontaneously differentiated into embryo bodies(EB) containing hemangioblast.Expression of the hematopoietic genes was investigated by real-time reverse transcription-ploymerase chain reaction during EB differentiation.For the EB cells, blast-cloning forming cells analysis and blood-colony forming unit analysis were then performed, respectively. The numbers of the blasts were counted during hematopoietic differentiation.
RESULTSThe hemangioblast-specific expression vector with lmo2 or green fluorescence protein was transfected into ES cells.The neomycin-resistance ES cells generated EBs from 2.5 days to 10 days.Real time reverse transcription-ploymerase chain reaction analysis indicated that overexpression of lmo2 increased the expression of hematopoietic genes(gata1, tal1, Β-h1, and Β-major globin) during EB formation.Blast-cloning forming cells analysis showed that the numbers of the blasts generated by ES/lmo2 was 2-or 3-fold than those in the controls.The total numbers of the blood-colony forming unit or the numbers of the erythrocyte colony-forming unit generated by ES/lmo2 were 2.5 times or 3 times, respectively, when compared with the controls.
CONCLUSIONLMO2 enhances the proliferation and differentiation of hemangioblasts.
Adaptor Proteins, Signal Transducing ; physiology ; Animals ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Embryonic Stem Cells ; cytology ; Hematopoietic Stem Cells ; cytology ; metabolism ; LIM Domain Proteins ; physiology ; Mice
9.The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells.
Li-Wei ZHENG ; Logan LINTHICUM ; Pamela K DENBESTEN ; Yan ZHANG
International Journal of Oral Science 2013;5(1):1-6
		                        		
		                        			
		                        			This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCl) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which was also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.
		                        		
		                        		
		                        		
		                        			Ameloblasts
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Amelogenesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Amelogenin
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Bone Morphogenetic Protein 4
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Culture Techniques
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Lineage
		                        			;
		                        		
		                        			Embryonic Stem Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Fibroblast Growth Factor 8
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Hedgehog Proteins
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Homeodomain Proteins
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Keratins
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			classification
		                        			;
		                        		
		                        			Lithium Chloride
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			MSX1 Transcription Factor
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Mouth Mucosa
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Phenotype
		                        			;
		                        		
		                        			Regeneration
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Skin
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Transcription Factors
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Tretinoin
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
10.Characteristics of microsomal phase II metabolic enzymes in mouse embryonic stem cell-derived liver tissue.
Tong LI ; Mei-Yuan GUO ; Kui-Fen MA ; Yue DU ; Liang-Yan HE ; Dan-Yan ZHU ; Yi-Jia LOU
Journal of Zhejiang University. Medical sciences 2013;42(5):530-537
OBJECTIVETo investigate the characteristics of phase II metabolic enzymes in mouse embryonic stem (ES) cell-derived liver tissue.
METHODSMature hepatocytes were differentiated from embryonic stem cells in cultured mouse embryoid bodies (EB) at d18. Western blot was used to detect the expression of uridine 5'-diphosphate glucronosyl transferase (UGT1a1,UGT1a6) and microsomal glutathione S-transferases 1(mGST1) during the differentiation course.The derived liver tissue was incubated with UDPGA and 7-HFC,the formation of 7-HFC glucuronide was detected by HPLC to examine the total activities of UGT1a1 and UGT1a6. Furthermore, the microsomes were incubated with CDNB and GSH,and the mGST1 activity was measured by spectrometry.
RESULTSAn increase tendency of UGT1a1 expression was noticed during the differentiation course. UGT1a6 and mGST1 were not detected in the earlier stage until d18 of differentiation. The metabolic activity of mGST1 in the derived hepatocytes was 7.65 nmol/min/mg on d18.
CONCLUSIONThe ES cell-derived liver tissue possesses partial metabolic function of phase II enzymes on d18 of differentiation,which might be used as a model for in vitro research on hepatic pathophysiology and phase II drug metabolism.
Animals ; Cell Differentiation ; Embryoid Bodies ; cytology ; Embryonic Stem Cells ; cytology ; Glucuronosyltransferase ; physiology ; Glutathione Transferase ; physiology ; Hepatocytes ; cytology ; enzymology ; Mice
            
Result Analysis
Print
Save
E-mail