1.In-vitro determination of minimum inhibitory concentration (MIC) and contact time of povidone-iodine against Staphylococcus aureus and Klebsiella aerogenes using micro suspension test, colorimetric resazurin microplate assay, and Dey Engley neutralizer assay
Azita Racquel G. Lacuna ; Micaella C. Dato ; Loisse Mikaela M. Loterio ; Geraldine B. Dayrit ; Sharon Yvette Angelina M. Villanueva ; Maria Margarita M. Lota
Acta Medica Philippina 2025;59(4):113-124
BACKGROUND AND OBJECTIVE
The human nasal passages host major human pathogens. Recent research suggests that the microbial communities inhabiting the epithelial surfaces of the nasal passages play a key factor in maintaining a healthy microenvironment by affecting both resistance to pathogens and immunological responses. Colonization of the nasal cavity by different pathogens such as Staphylococcus aureus and Klebsiella aerogenes, is associated with a higher postoperative infection morbidity. Povidone-iodine (PVP-I) as an antiseptic has been proven to display high antibacterial, antiviral, and antifungal properties even at low concentrations, and was shown to be effective in the control of infections to limit their impact and spread. It can be used as a topical antiseptic for skin decontamination and wound management, as a nasal spray, or as a gargle. There are different methods in testing the efficacy of potential antimicrobial suspensions. This study aimed to determine the concentration of PVP-I that is most effective in nasal decolonization using microsuspension test and colorimetric minimum inhibitory concentration (MIC) determination assays, resazurin microtiter assay (REMA), and Dey-Engley (D/E) neutralizer assay. The findings of this study will contribute to knowledge regarding the intended use of PVP-I in microbial control, particularly in bacterial infections.
METHODSSeveral dilutions (2.0%, 1.0%, 0.5%, 0.25%, 0.1% and 0.09%) of commercially bought 10% (10 mg per 100 ml) povidone-iodine were prepared and tested against a standardized inoculum (1x105) of Staphylococcus aureus and Klebsiella aerogenes at different contacttimes (5 seconds, 10 seconds, 30 seconds, 1 minute, and 5 minutes). Microdilution suspension test was performed to determine the log reduction per variable, while REMA and D/E neutralizer assay were used to determine the MIC. A value of greater than or equal to 5 log reduction was considered effective for microdilution suspension test. Estimates of agreement statistics were used to interpret the results of the assay in which the overall percent agreement (OPA), positive percent agreement (PPA), negative percent agreement (NPA), and Cohen’s kappa statistics were calculated.
RESULTSPovidone-iodine concentration of 0.25% exhibited ?5 log reduction against K. aerogenes at the minimum contact time of 5 seconds. On the other hand, a slightly higher PVP-I concentration was required to achieve ?5 log reduction for S. aureus at 0.5% concentration and a minimum contact time of 1 minute. There was an observed concordance of the results of REMA and D/E neutralizer as MIC colorimetric indicators, which yielded an overall test percent agreement of 90.30% (95% CI: 84.73–94.36), and a strong level of agreement (? = 0.8, pCONCLUSION
Low povidone-iodine concentrations (i.e., 0.5% against S. aureus and 0.25% against K. aerogenes) were observed to have bactericidal activity of at least 5 log reduction as rapid as the minimum contact time of 5 seconds. Furthermore, D/E and REMA, as colorimetric indicators, had comparable performance (OPA = 90.30%; ? = 0.8, p
Human
;
Bacteria
;
Povidone-iodine
;
Microbial Sensitivity Tests
;
Anti-infective Agents, Local
;
Enterobacter Aerogenes
;
Staphylococcus Aureus
2.The trojan horse - A case of transthyretin cardiac amyloidosis diagnosed via multi-modality imagin
Gwen R. Marcellana ; Lynnette Marie C. Tan ; Jared Alphonse S. Cordero ; Carmen N. Chungunco ; Christian Michael H. Pahway ; Nathania S. Fajardo
Philippine Journal of Cardiology 2025;53(1):115-120
BACKGROUND
Observational studies have increasingly reported transthyretin amyloid cardiomyopathy (ATTR-CM) as an under-recognized cause of heart failure. We report the first ATTR-CM diagnosed via multi-modality imaging in the Philippines signifying an important milestone in recognition and management of this formerly believed rare disease, locally. Utilization of non-invasive imaging such as echocardiography, cardiac MRI and technetium-99m pyrophosphate scintigraphy (PYP) demonstrates the potential for accurate diagnosis as well as timely and appropriate treatment strategies.
DISCUSSIONAn 81/M Filipino with a history of carpal tunnel surgery, post-percutaneous coronary intervention (PCI), had three months’ history of refractory heart failure symptoms despite optimized medical treatment. His 2D-echo showed an ejection fraction (EF): 45%-50%, increased left ventricular (LV) posterior wall thickness with mild basal inferior wall hypokinesia and ECG: atrial fibrillation with low voltage. Speckle tracking imaging showed average global longitudinal strain: - 6.5% with cherry-on-top pattern on polar strain map. Cardiac MRI demonstrated diffuse late gadolinium enhancement from endocardial to transmural layers of biventricular and biatrial walls, highly suggestive of cardiac amyloidosis (CA). Light-chain amyloidosis was excluded by negative serum/urine protein electrophoresis/immunofixation. Tc-99m PYP scan revealed greater myocardial-than-bone uptake with a Perugini score 3 and calculated heart-to-contralateral ratio of 1.7. Congestion was controlled with intravenous loop diuretics and he was discharged stable with metoprolol succinate, dapagliflozin and apixaban. At the time of paper submission, he is currently being evaluated for tafamidis treatment.
CONCLUSIONThe case highlighted the advantage of multi-modality imaging for noninvasive yet accurate identification of the disease. A tailored approach is required in slowing the disease progression and improving outcomes.
Human ; Male ; Amyloidosis ; Cardiomyopathies ; Percutaneous Coronary Intervention ; Sodium Potassium Chloride Symporter Inhibitors
4.Mechanism of the pretreatment with electroacupuncture of "biaoben acupoint combination" for regulating cardiomyocyte mitochondrial fission in the rats of myocardial ischemia-reperfusion injury.
Yanlin ZHANG ; Song WU ; Qianru GUO ; Yuntao YU ; Sunyi WANG ; Yuqi WEI ; Xiaoman WAN ; Zhen LU ; Xiaoru HE
Chinese Acupuncture & Moxibustion 2025;45(3):335-344
OBJECTIVE:
To observe the effect of electroacupuncture (EA) pretreatment of "biaoben acupoint combination" on cardiomyocyte mitochondrial fission in the rats with myocardial ischemia-reperfusion injury (MIRI) and explore its mechanism.
METHODS:
Fifty male SD rats were randomly divided into a sham-operation group, a model group, an EA pretreatment group, an EA pretreatment + Compound C group and an EA pretreatment+ML385 group, 10 rats in each group. In the EA pretreatment, the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, EA was delivered at bilateral "Neiguan" (PC6), "Zusanli" (ST36) and "Guanyuan" (CV4) for 20 min, with continuous wave and 2 Hz of frequency, 1 mA of current, once daily for consecutive 7 days. On day 8, in the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, 30 min before model preparation, the intraperitoneal injection with Compound C (0.3 mg/kg) and ML385 (30 mg/kg) was administered respectively. Except in the sham-operation group, the ligation of the left anterior descending coronary artery was performed to prepare MIRI rat model in the rest groups. In the sham-operation group, the thread was not ligated. After modeling, the content of reactive oxygen species (ROS) in the ischemic area was measured by flow cytometry, superoxide dismutase (SOD) was detected using xanthine oxidase method, and malondialdelyde (MDA) was detected using thiobarbituric acid (TBA) chromatometry. The morphology of myocardial tissue in the ischemic area was observed with HE staining, and the mitochondria ultrastructure of cardiomyocytes observed under transmission electron microscopy. Using immunofluorescence analysis, the positive expression of mitochondrial fission factor (MFF), mitochondrial fission 1 protein antibody (Fis1) and dynamin-related protein 1 (Drp1) was detected; and with immunohistochemical method used, the protein expression of adenosine monophosphate-activated protein kinase (AMPK), nuclear factor E2-associated factor2 (Nrf2) and Drp1 in the ischemic area was detected.
RESULTS:
Compared with the sham-operation group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 increased in the model group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 decreased (P<0.01), and the protein expression of Drp1 elevated (P<0.01). Compared with the model group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01), and the protein expression of Drp1 declined (P<0.01); and in the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the positive expression of MFF, Fis1 and Drp1, and the protein expression of Drp1 were all reduced (P<0.01). When compared with the EA pretreatment + Compound C group and the EA pretreatment+ML385 group, the content of ROS and MDA in the myocardial tissue of the ischemic area, and the positive expression of MFF, Fis1 and Drp1 were dropped in the EA pretreatment group (P<0.01); the content of SOD and the protein expression of AMRK and Nrf2 rose (P<0.01, P<0.05), and the protein expression of Drp1 decreased (P<0.05). In comparison with the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group, the cardiac muscle fiber rupture, cell swelling and mitochondrial disorders were obviously alleviated in the EA pretreatment group. The morphological changes were similar among the model group, the EA pretreatment+Compound C group and the EA pretreatment+ML385 group.
CONCLUSION
Electroacupuncture pretreatment of "biaoben acupoint combination" attenuates myocardial injury in MIRI rats, probably through promoting the phosphorylation of AMPK and Nrf2, inhibiting the excessive mitochondrial fission induced by Drp1, and reducing mitochondrial dysfunction caused by mitochondrial fragmentation and vacuolation.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Myocardial Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
;
Rats
;
Acupuncture Points
;
Mitochondrial Dynamics
;
Humans
;
Reactive Oxygen Species/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Superoxide Dismutase/metabolism*
5.Effects of Tongdu Tiaoshen acupuncture on depression-like behavior and Endophilin A1/ROS pathway in hippocampal tissue of CUMS model rats.
Ling ZOU ; Xiaoge SONG ; Yanbiao ZHAO ; Tingting QIAN ; Yifan CHU ; Wen PAN ; Haoran CHU ; Shaojie YANG ; Meixiang SUN ; Peiyang SUN
Chinese Acupuncture & Moxibustion 2025;45(9):1281-1289
OBJECTIVE:
To observe the effects of Tongdu Tiaoshen acupuncture (for unblocking the obstruction in the governor vessel and regulating the spirit) on depression-like behavior and the hippocampal Endophilin A1/reactive oxygen species (ROS) pathway in the chronic unpredictable mild stress (CUMS) model rats, and explore the mechanism of this therapy for depression.
METHODS:
Forty-eight male SD rats of SPF grade were randomly divided into a normal group (n=12) and a modeling group (n=36). In the modeling group, CUMS was performed to establish depression model. The successfully-modeled rats were randomized into a model group, a Tongdu Tiaoshen acupuncture group (referred to as the acupuncture group), and a fluoxetine group, with 12 rats in each group. In the acupuncture group, "Baihui" (GV20), "Shenting" (GV24), "Shuigou" (GV26) and "Dazhui" (GV14) were stimulated with acupuncture. This intervention measure was delivered once a day, continuously for 6 days; it was discontinued on day 7 and was completed in 28 days. In the fluoxetine group, intragastric administration was done with fluoxetine solution (2.1 mg/kg), once a day, and for 28 consecutive days. Before and after modeling, and after intervention completion, the body mass, sucrose preference rate and the total distance of movement and the boxes of horizontal crossing in the open field experiment were observed in each group. After intervention, using HE staining, the hippocampal neuron morphology was observed; using Nissl staining, the hippocampal Nissl body number was counted. The hippocampal mitochondria was observed under transmission electron microscopy. The average fluorescence intensity of ROS in hippocampal was determined using flow cytometry. With Western blot method, the protein expression of Endophilin A1, growth associated protein 43 (GAP-43), and brain-derived neurotrophic factor (BDNF) in hippocampal was detected; and with RT-qPCR method, the mRNA expression of Endophilin A1, GAP-43, and BDNF was recorded. Using the immunofluorescence, the average fluorescence intensity of Endophilin A1, GAP-43, and BDNF in hippocampal tissue was determined.
RESULTS:
Compared with the normal group, in the model group, the body mass, sucrose preference rate, and the total distance of movement and the boxes of horizontal crossing in the open field experiment decreased (P<0.01); the hippocampal neuronal structure was unclear, the matrix was relatively loose, and the number of Nissl body decreased (P<0.01); mitochondrial structure was disarranged, the outer membrane was ruptured, mitochondrial cristae was irregular or missed; the average fluorescence intensity of ROS in hippocampal tissue, the protein and mRNA expression and the average fluorescence intensity of Endophilin A1 in hippocampal tissue increased (P<0.01), while the protein and mRNA expression of GAP-43 and BDNF and its average fluorescence intensity decreased (P<0.01). Compared with the model group, the acupuncture group and the fluoxetine group showed the increase in body mass, sucrose preference rate, the total distance of movement and the boxes of horizontal crossing in the open field experiment (P<0.05, P<0.01); the hippocampal neuronal structure became relatively clear, the matrix was relatively dense, and the number of Nissl body was elevated (P<0.01); mitochondrial structure got normal and disarranged slightly, the average fluorescence intensity of ROS in hippocampal tissue, the protein and mRNA expression and the average fluorescence intensity of Endophilin A1 in hippocampal tissue were reduced (P<0.01), while the protein and mRNA expression of GAP-43 and BDNF and the average fluorescence intensity rose (P<0.01, P<0.05). Compared with the fluoxetine group, the acupuncture group presented the increase in the average fluorescence intensity of ROS, the protein expression and the average fluorescence intensity of Endophilin A1, the protein expression of GAP-43 and the mRNA expression of BDNF (P<0.01, P<0.05), and the decrease of the protein expression and the average fluorescence intensity of BDNF, the mRNA expression of Endophilin A1, and the average fluorescence intensity of GAP-43 (P<0.01, P<0.05).
CONCLUSION
Tongdu tiaoshen acupuncture alleviates depression-like behaviors in CUMS model rats and protects hippocampal neurons, which may be related to suppressing Endophilin A1/ROS signaling pathway and attenuating oxidative stress reactions.
Animals
;
Male
;
Hippocampus/metabolism*
;
Acupuncture Therapy
;
Rats, Sprague-Dawley
;
Rats
;
Depression/psychology*
;
Humans
;
Reactive Oxygen Species/metabolism*
;
Disease Models, Animal
;
Acupuncture Points
6.Tapping with plum-blossom needle combined with sulfur ointment and local irradiation for primary cutaneous amyloidosis: a case report.
Fasen DENG ; Xiao CHEN ; Weijuan ZHENG ; Ziyang HE ; Xinsheng CHEN
Chinese Acupuncture & Moxibustion 2025;45(12):1800-1802
The paper reports one case of primary cutaneous amyloidosis (PCA) treated by tapping with plum-blossom needle combined with sulfur ointment and local irradiation. PCA in this case was manifested as generalized erythema, papules, plaques, lichenification, and severe pruritus. In treatment, tapping with plum-blossom needle was delivered at typical lesions to induce local congestion, redness, and minimal bleeding. After cleaned with sterile gauze for 10 s, 25% sulfur ointment was evenly applied, followed by local irradiation with a TDP lamp for 15 min. This session was repeated twice a week. In 1 month of treatment, the lesions turned flat and the skin was soft as the normal, with pigmentation and mild pruritus left. In 3 months of follow-up, no papules recurred, and mild pruritus presented occasionally.
Humans
;
Ointments/administration & dosage*
;
Sulfur/administration & dosage*
;
Skin Diseases, Genetic/radiotherapy*
;
Middle Aged
;
Amyloidosis, Familial/radiotherapy*
;
Male
;
Acupuncture Therapy/instrumentation*
;
Female
;
Combined Modality Therapy
7.Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility.
Kai MENG ; Qian LIU ; Yiding QIN ; Wenjie QIN ; Ziming ZHU ; Longlong SUN ; Mingchao JIANG ; Joseph ADU-AMANKWAAH ; Fei GAO ; Rubin TAN ; Jinxiang YUAN
Chinese Medical Journal 2025;138(4):379-388
Male infertility has become a global concern, accounting for 20-70% of infertility. Dysfunctional spermatogenesis is the most common cause of male infertility; thus, treating abnormal spermatogenesis may improve male infertility and has attracted the attention of the medical community. Mitochondria are essential organelles that maintain cell homeostasis and normal physiological functions in various ways, such as mitochondrial oxidative phosphorylation (OXPHOS). Mitochondrial OXPHOS transmits electrons through the respiratory chain, synthesizes adenosine triphosphate (ATP), and produces reactive oxygen species (ROS). These mechanisms are vital for spermatogenesis, especially to maintain the normal function of testicular Sertoli cells and germ cells. The disruption of mitochondrial OXPHOS caused by external factors can result in inadequate cellular energy supply, oxidative stress, apoptosis, or ferroptosis, all inhibiting spermatogenesis and damaging the male reproductive system, leading to male infertility. This article summarizes the latest pathological mechanism of mitochondrial OXPHOS disorder in testicular Sertoli cells and germ cells, which disrupts spermatogenesis and results in male infertility. In addition, we also briefly outline the current treatment of spermatogenic malfunction caused by mitochondrial OXPHOS disorders. However, relevant treatments have not been fully elucidated. Therefore, targeting mitochondrial OXPHOS disorders in Sertoli cells and germ cells is a research direction worthy of attention. We believe this review will provide new and more accurate ideas for treating male infertility.
Male
;
Humans
;
Infertility, Male/metabolism*
;
Oxidative Phosphorylation
;
Mitochondria/metabolism*
;
Spermatogenesis/physiology*
;
Sertoli Cells/metabolism*
;
Oxidative Stress/physiology*
;
Animals
;
Reactive Oxygen Species/metabolism*
8.Interaction between macrophages and ferroptosis: Metabolism, function, and diseases.
Qiaoling JIANG ; Rongjun WAN ; Juan JIANG ; Tiao LI ; Yantong LI ; Steven YU ; Bingrong ZHAO ; Yuanyuan LI
Chinese Medical Journal 2025;138(5):509-522
Ferroptosis, an iron-dependent programmed cell death process driven by reactive oxygen species-mediated lipid peroxidation, is regulated by several metabolic processes, including iron metabolism, lipid metabolism, and redox system. Macrophages are a group of innate immune cells that are widely distributed throughout the body, and play pivotal roles in maintaining metabolic balance by its phagocytic and efferocytotic effects. There is a profound association between the biological functions of macrophage and ferroptosis. Therefore, this review aims to elucidate three key aspects of the unique relationship between macrophages and ferroptosis, including macrophage metabolism and their regulation of cellular ferroptosis; ferroptotic stress that modulates functions of macrophage and promotion of inflammation; and the effects of macrophage ferroptosis and its role in diseases. Finally, we also summarize the possible mechanisms of macrophages in regulating the ferroptosis process at the global and local levels, as well as the role of ferroptosis in the macrophage-mediated inflammatory process, to provide new therapeutic insights for a variety of diseases.
Ferroptosis/physiology*
;
Macrophages/metabolism*
;
Humans
;
Animals
;
Iron/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Lipid Peroxidation/physiology*
;
Inflammation/metabolism*
9.Oxidative stress in diabetes mellitus and its complications: From pathophysiology to therapeutic strategies.
Xingyu CHEN ; Na XIE ; Lixiang FENG ; Yujing HUANG ; Yuyao WU ; Huili ZHU ; Jing TANG ; Yuanyuan ZHANG
Chinese Medical Journal 2025;138(1):15-27
Oxidative stress due to aberrant metabolism is considered as a crucial contributor to diabetes and its complications. Hyperglycemia and hyperlipemia boost excessive reactive oxygen species generation by elevated mitochondrial respiration, increased nicotinamide adenine dinucleotide phosphate oxidase activity, and enhanced pro-oxidative processes, including protein kinase C pathways, hexosamine, polyol, and advanced glycation endproducts, which exacerbate oxidative stress. Oxidative stress plays a significant role in the onset of diabetes and its associated complications by impairing insulin production, increasing insulin resistance, maintaining hyperglycemic memory, and inducing systemic inflammation. A more profound comprehension of the molecular processes that link oxidative stress to diabetes is crucial to new preventive and therapeutic strategies. Therefore, this review discusses the mechanisms underlying how oxidative stress contributes to diabetes mellitus and its complications. We also summarize the current approaches for prevention and treatment by targeting the oxidative stress pathways in diabetes.
Oxidative Stress/physiology*
;
Humans
;
Diabetes Mellitus/physiopathology*
;
Diabetes Complications/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Glycation End Products, Advanced/metabolism*
;
Animals
10.Transposable elements in health and disease: Molecular basis and clinical implications.
Chinese Medical Journal 2025;138(18):2220-2233
Transposable elements (TEs), once considered genomic "junk", are now recognized as critical regulators of genome function and human disease. These mobile genetic elements-including retrotransposons (long interspersed nuclear elements [LINE-1], Alu, short interspersed nuclear element-variable numbers of tandem repeats-Alu [SVA], and human endogenous retrovirus [HERV]) and DNA transposons-are tightly regulated by multilayered mechanisms that operate from transcription through to genomic integration. Although typically silenced in somatic cells, TEs are transiently activated during key developmental stages-such as zygotic genome activation and cell fate determination-where they influence chromatin architecture, transcriptional networks, RNA processing, and innate immune responses. Dysregulation of TEs, however, can lead to genomic instability, chronic inflammation, and various pathologies, including cancer, neurodegeneration, and aging. Paradoxically, their reactivation also presents new opportunities for clinical applications, particularly as diagnostic biomarkers and therapeutic targets. Understanding the dual role of TEs-and balancing their contributions to normal development and disease-is essential for advancing novel therapies and precision medicine.
Humans
;
DNA Transposable Elements/physiology*
;
Animals
;
Long Interspersed Nucleotide Elements/genetics*
;
Neoplasms/genetics*
;
Genomic Instability/genetics*
;
Endogenous Retroviruses/genetics*


Result Analysis
Print
Save
E-mail