1.<i>BCS1i>Neonatal growth retardation and lactic acidosis initiated by novel mutation sites in <i>Li> gene.
Ming WANG ; Dong Juan WANG ; Yi SHU ; Dan ZHU ; Chao Wen YU ; Xiao Yan HE ; Lin ZOU
Chinese Journal of Preventive Medicine 2023;57(6):912-917
This study aims to analyze the clinical characteristics and genetic variations of two cases with developmental delay and lactic acidosis in a family, and to explore the relationship between genetic variations and clinical features. A retrospective analysis was conducted on the clinical characteristics of two siblings with developmental delay and lactic acidosis who were treated at the Neonatal Department of Children's Hospital of Chongqing Medical University in May 2019 and December 2021, respectively. Whole-exome sequencing was used to detect genetic variations in the affected children. Homology modeling of the BCS1L protein was performed to analyze the structural and functional changes of the protein. The correlation between genetic variations and clinical phenotypes was analyzed. The results showed that the main clinical features of the two affected children in this family were manifestations of mitochondrial respiratory chain complex Ⅲ deficiency, including prematurity, developmental delay, respiratory failure, lactic acidosis, cholestasis, liver dysfunction, renal tubular lesions, coagulation dysfunction, anemia, hypoglycemia, hypotonia, and early death. Whole-exome sequencing revealed a novel deletion mutation c.486_488delGGA (p.E163del) and a novel missense mutation c.992C>T (p.T331I) in the BCS1L gene. Structural analysis of the homology modeling showed that the compound heterozygous mutation had a significant impact on protein function. In conclusion, the novel mutation site c.992C>T (p.T331I) in the BCS1L gene is a "likely pathogenic" mutation, and the compound heterozygous mutation is closely related to the phenotype of mitochondrial respiratory chain complex Ⅲ deficiency.
Humans
;
Acidosis, Lactic/genetics*
;
Electron Transport Complex III/genetics*
;
Retrospective Studies
;
Mutation
;
Growth Disorders
;
ATPases Associated with Diverse Cellular Activities/genetics*
2.4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis.
Yifang HE ; Qianzhao JI ; Zeming WU ; Yusheng CAI ; Jian YIN ; Yiyuan ZHANG ; Sheng ZHANG ; Xiaoqian LIU ; Weiqi ZHANG ; Guang-Hui LIU ; Si WANG ; Moshi SONG ; Jing QU
Protein & Cell 2023;14(3):202-216
Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.
Mesenchymal Stem Cells/physiology*
;
Cellular Senescence
;
Homeostasis
;
Cell Cycle Proteins/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Mitochondria/metabolism*
;
Electron Transport Complex III/metabolism*
;
Humans
;
Cells, Cultured
3.Analysis of gene variant in an infant with succinic semialdehyde dehydrogenase deficiency.
Dandan YAN ; Xiaowei XU ; Xuetao WANG ; Xinjie ZHANG ; Xiufang ZHI ; Hong WANG ; Yuqing ZHANG ; Jianbo SHU
Chinese Journal of Medical Genetics 2022;39(2):216-221
OBJECTIVE:
To explore the genetic basis for a child with succinate semialdehyde dehydrogenase deficiency.
METHODS:
Peripheral blood samples of the proband and his parents were collected and subjected to Sanger sequencing. High-throughput sequencing was used to verify the gene variants. Bioinformatic software was used to analyze the pathogenicity of the variant sites.
RESULTS:
Sanger sequencing showed that the proband carried a homozygous c.1529C>T (p.S510F) variant of the ALDH5A1 gene, for which his mother was a carrier. The same variant was not detected in his father. However, high-throughput sequencing revealed that the child and his father both had a deletion of ALDH5A1 gene fragment (chr6: 24 403 265-24 566 986).
CONCLUSION
The c.1529C>T variant of the ALDH5A1 gene and deletion of ALDH5A1 gene fragment probably underlay the disease in the child. High-throughput sequencing can detect site variation as well as deletion of gene fragment, which has enabled genetic diagnosis and counseling for the family.
Amino Acid Metabolism, Inborn Errors/genetics*
;
Child
;
Developmental Disabilities
;
Humans
;
Infant
;
Mutation
;
Succinate-Semialdehyde Dehydrogenase/genetics*
4.Succinate dehydrogenase-deficient renal cell carcinoma:a clinicopathological, ultrastructural and molecular analysis.
Xiao Tong WANG ; Xuan WANG ; Ru Song ZHANG ; Kai CHENG ; Qiu Yuan XIA ; Qiu RAO
Chinese Journal of Pathology 2022;51(1):12-16
Objective: To investigate the clinicopathological features, immunophenotype, ultrastructure, genetic alterations and prognosis of succinate dehydrogenase-deficient renal cell carcinoma (SDH RCC). Methods: A total of 11 SDH RCCs, diagnosed from 2010 to 2019, were selected from the Department of Pathology of Nanjing Jingling Hospital, Nanjing University School of Medicine for clinicopathologic, immunohistochemical (IHC), ultrastructural investigation and follow-up. The molecular features of seven cases were analyzed by the panel-targeted DNA next generation sequencing (NGS). Results: There were seven males and four females, with ages ranging from 24 to 62 years (mean 41.4 years, median 41 years). Microscopically, SDH RCC was mainly composed of solid and tubular structures with local cystic change. Four cases showed nested or trabecular structure distributed in a loose hypocellular connective tissue or around scar, similar to oncocytoma. The neoplastic cells demonstrated flocculent eosinophilic cytoplasm with typical intracytoplasmic vacuoles. Immunohistochemically, eight cases were negative for SDHB; three cases showed focal and weak expression, whereas normal renal tubular and vascular endothelial cells demonstrated strong cytoplasmic staining. NGS of DNA targeted-panel detected pathogenic mutations of SDHB gene in seven cases (including three cases with equivocal IHC expression of SDHB), without any mutations in other SDH related genes. There were four cases of SDHB missense mutation, one case of frameshift mutation, one case of splicing mutation, and one case of acquired stop codon mutation. Conclusions: SDH RCC is a distinct variant of RCCs with genetic tendency or with hereditary cancer syndrome. NGS is recommended to detect the related gene mutations for a definitive diagnosis. The patients should be closely followed up.
Adult
;
Carcinoma, Renal Cell/genetics*
;
Endothelial Cells
;
Female
;
Humans
;
Kidney Neoplasms/genetics*
;
Male
;
Middle Aged
;
Prognosis
;
Succinate Dehydrogenase/genetics*
;
Young Adult
5.Reduced semen quality in patients with testicular cancer seminoma is associated with alterations in the expression of sperm proteins.
Tânia R DIAS ; Ashok AGARWAL ; Peter N PUSHPARAJ ; Gulfam AHMAD ; Rakesh SHARMA
Asian Journal of Andrology 2020;22(1):88-93
Testicular cancer seminoma is one of the most common types of cancer among men of reproductive age. Patients with this condition usually present reduced semen quality, even before initiating cancer therapy. However, the underlying mechanisms by which testicular cancer seminoma affects male fertility are largely unknown. The aim of this study was to investigate alterations in the sperm proteome of men with seminoma undergoing sperm banking before starting cancer therapy, in comparison to healthy proven fertile men (control group). A routine semen analysis was conducted before cryopreservation of the samples (n = 15 per group). Men with seminoma showed a decrease in sperm motility (P = 0.019), total motile count (P = 0.001), concentration (P = 0.003), and total sperm count (P = 0.001). Quantitative proteomic analysis identified 393 differentially expressed proteins between the study groups. Ten proteins involved in spermatogenesis, sperm function, binding of sperm to the oocyte, and fertilization were selected for validation by western blot. We confirmed the underexpression of heat shock-related 70 kDa protein 2 (P = 0.041), ubiquinol-cytochrome C reductase core protein 2 (P = 0.026), and testis-specific sodium/potassium-transporting ATPase subunit alpha-4 (P = 0.016), as well as the overexpression of angiotensin I converting enzyme (P = 0.005) in the seminoma group. The altered expression levels of these proteins are associated with spermatogenesis dysfunction, reduced sperm kinematics and motility, failure in capacitation and fertilization. The findings of this study may explain the decrease in the fertilizing ability of men with seminoma before starting cancer therapy.
Acrosin/metabolism*
;
Adult
;
Case-Control Studies
;
Chaperonin Containing TCP-1/metabolism*
;
Electron Transport Complex III/metabolism*
;
HSP70 Heat-Shock Proteins/metabolism*
;
Humans
;
Male
;
Peptidyl-Dipeptidase A/metabolism*
;
Proteasome Endopeptidase Complex/metabolism*
;
Proteomics
;
Semen Analysis
;
Seminoma/metabolism*
;
Sodium-Potassium-Exchanging ATPase/metabolism*
;
Sperm Count
;
Sperm Motility
;
Spermatozoa/metabolism*
;
Testicular Neoplasms/metabolism*
6.Clinical and muscle magnetic resonance image findings in patients with late-onset multiple acyl-CoA dehydrogenase deficiency.
Dao-Jun HONG ; Min ZHU ; Zi-Juan ZHU ; Lu CONG ; Shan-Shan ZHONG ; Ling LIU ; Jun ZHANG
Chinese Medical Journal 2019;132(3):275-284
BACKGROUND:
Late-onset multiple acyl-coA dehydrogenase deficiency (MADD) is an autosomal recessive inherited metabolic disorder. It is still unclear about the muscle magnetic resonance image (MRI) pattern of the distal lower limb pre- and post-treatment in patients with late-onset MADD. This study described the clinical and genetic findings in a cohort of patients with late-onset MADD, and aimed to characterize the MRI pattern of the lower limbs.
METHODS:
Clinical data were retrospectively collected from clinic centers of Peking University People's Hospital between February 2014 and February 2018. Muscle biopsy, blood acylcarnitines, and urine organic acids profiles, and genetic analysis were conducted to establish the diagnosis of MADD in 25 patients. Muscle MRI of the thigh and leg were performed in all patients before treatment. Eight patients received MRI re-examinations after treatment.
RESULTS:
All patients presented with muscle weakness or exercise intolerance associated with variants in the electron transfer flavoprotein dehydrogenase gene. Muscle MRI showed a sign of both edema-like change and fat infiltration selectively involving in the soleus (SO) but sparing of the gastrocnemius (GA) in the leg. Similar sign of selective involvement of the biceps femoris longus (BFL) but sparing of the semitendinosus (ST) was observed in the thigh. The sensitivity and specificity of the combination of either "SO+/GA-" sign or "BFL+/ST-" sign for the diagnosis of late-onset MADD were 80.0% and 83.5%, respectively. Logistic regression model supported the findings. The edema-like change in the SO and BFL muscles were quickly recovered at 1 month after treatment, and the clinical symptom was also relieved.
CONCLUSIONS
This study expands the clinical and genetic spectrums of late-onset MADD. Muscle MRI shows a distinct pattern in the lower limb of patients with late-onset MADD. The dynamic change of edema-like change in the affected muscles might be a potential biomarker of treatment response.
Adolescent
;
Adult
;
Biopsy
;
methods
;
Carnitine
;
analogs & derivatives
;
blood
;
Electron-Transferring Flavoproteins
;
genetics
;
Female
;
Hamstring Muscles
;
diagnostic imaging
;
metabolism
;
pathology
;
Humans
;
Iron-Sulfur Proteins
;
genetics
;
Magnetic Resonance Imaging
;
methods
;
Male
;
Middle Aged
;
Multiple Acyl Coenzyme A Dehydrogenase Deficiency
;
diagnostic imaging
;
genetics
;
pathology
;
Muscle, Skeletal
;
diagnostic imaging
;
metabolism
;
pathology
;
Oxidoreductases Acting on CH-NH Group Donors
;
genetics
;
Retrospective Studies
;
Young Adult
7.Analysis of ETFDH gene variation in a Chinese family affected with lipid storage myopathy.
Chinese Journal of Medical Genetics 2019;36(10):1002-1005
OBJECTIVE:
To detect potential variation in an ethnic Han Chinese family affected with late-onset lipid storage myopathy.
METHODS:
Next generation sequencing (NGS) was used to screen disease-related genes in the proband. Suspected mutation was validated with PCR and Sanger sequencing in two patients, their father, and 100 healthy controls.
RESULTS:
Heterozygous c.770A>G (p.Tyr257Cys) and c.1395dupT (p.Gly466Tryfs) mutation were detected in the two patients. Their father was found to be heterozygous for the c.770A>G (p.Tyr257Cys) mutation, while the c.1395dupT (p.Gly466Tryfs) variation was not reported previously and not found among the healthy controls.
CONCLUSION
Mutations of the ETFDH gene probably underlie the pathogenesis in this family. The novel c.1395dupT (p.Gly466Tryfs) has enriched the mutation spectrum of EDFDH gene.
Asian Continental Ancestry Group
;
Electron-Transferring Flavoproteins
;
genetics
;
Heterozygote
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Iron-Sulfur Proteins
;
genetics
;
Lipid Metabolism, Inborn Errors
;
genetics
;
Muscular Dystrophies
;
genetics
;
Mutation
;
Oxidoreductases Acting on CH-NH Group Donors
;
genetics
8.Molecular characterization of Plasmodium juxtanucleare in Thai native fowls based on partial cytochrome C oxidase subunit I gene
Tawatchai POHUANG ; Sucheeva JUNNU
Korean Journal of Veterinary Research 2019;59(2):69-74
Avian malaria is one of the most important general blood parasites of poultry in Southeast Asia. Plasmodium (P.) juxtanucleare causes avian malaria in wild and domestic fowl. This study aimed to identify and characterize the Plasmodium species infecting in Thai native fowl. Blood samples were collected for microscopic examination, followed by detection of the Plasmodium cox I gene by using PCR. Five of the 10 sampled fowl had the desired 588 base pair amplicons. Sequence analysis of the five amplicons indicated that the nucleotide and amino acid sequences were homologous to each other and were closely related (100% identity) to a P. juxtanucleare strain isolated in Japan (AB250415). Furthermore, the phylogenetic tree of the cox I gene showed that the P. juxtanucleare in this study were grouped together and clustered with the Japan strain. The presence of P. juxtanucleare described in this study is the first report of P. juxtanucleare in the Thai native fowl of Thailand.
Amino Acid Sequence
;
Animals
;
Asia, Southeastern
;
Asian Continental Ancestry Group
;
Base Pairing
;
Cytochromes c
;
Cytochromes
;
Electron Transport Complex IV
;
Humans
;
Japan
;
Malaria, Avian
;
Parasites
;
Plasmodium
;
Polymerase Chain Reaction
;
Poultry
;
Sequence Analysis
;
Thailand
;
Trees
9.Four Taeniasis saginata Cases Diagnosed at a University Hospital in Korea
Eun Jeong WON ; Ju Hyeon SHIN ; Yu Jeong LEE ; Moon Ju KIM ; Seung Ji KANG ; Sook In JUNG ; Soo Hyun KIM ; Jong Hee SHIN ; Jong Yil CHAI ; Sung Shik SHIN
The Korean Journal of Parasitology 2019;57(3):313-318
In recent years, the taeniasis has been rarely reported in the Republic of Korea (Korea). But in this study, we intend to report 4 taeniasis cases caused by Taenia saginata during a 5-month period (February to June 2018) at a unversity hospital in Gwangju, Korea. Worm samples (proglottids) discharged from all cases were identified by phenotypic and molecular diagnostics. Mitochondrial cytochrome c oxidase subunit I sequences showed 99.4–99.9% identity with T. saginata but, differed by 4% from T. asiatica and by 7% from T. multiceps, respectively. We found that tapeworms in 2 cases (Cases 2 and 3) yielded exactly the same sequences between them, which differed from those in Cases 1 and 4, suggesting intra-species variation in tapeworms. These taeniasis cases by T. saginata infection in this study, which occurred within a limited time period and region, suggest the possibility of a mini-outbreak. This study highlights the need for further epidemiological investigation of potentially overlooked cases of T. saginata infection in Korea.
Cestoda
;
Electron Transport Complex IV
;
Gwangju
;
Korea
;
Pathology, Molecular
;
Republic of Korea
;
Taenia saginata
;
Taeniasis
10.Morphological and Molecular Identification of Stellantchasmus dermogenysi n. sp. (Digenea: Heterophyidae) in Thailand
Chalobol WONGSAWAD ; Nattawadee NANTARAT ; Pheravut WONGSAWAD ; Preeyaporn BUTBOONCHOO ; Jong Yil CHAI
The Korean Journal of Parasitology 2019;57(3):257-264
We tried a series of morphological and molecular approaches to identify a new species of Stellantchasmus (Digenea: Heterophyidae) originating from the wrestling half-beaked fish, Dermogenys pusillus of Thailand. Adult worm samples of the new species were recovered from hamsters experimentally infected with the metacercariae from D. pusillus in Thailand. Two isolates (Thai and Korean) of Stellantchasmus falcatus were used as comparative control groups. Worm samples of 3 Stellantchasmus groups were morphologically observed and molecularly analyzed with the mitochondrial cytochrome c oxidase 1 gene. The morphological characteristics of S. dermogenysi n. sp. are similar to S. falcatus originating from brackish water fish, but minor difference was noted including the absence of the prepharynx, position of the ovary near the ceca end, smaller body size, and shorter esophageal length. A phylogenetic tree derived from neighbor-joining and maximum-likelihood methods suggests that S. dermogenysi n. sp. is separated from S. falcatus supported by high bootstrap values. The relative divergences persist between these host-specific trematodes, which we suggest should be recognized as 2 distinct species. Comparisons of S. dermogenysi n. sp. with S. falcatus isolated from mullets in Thailand and Korea indicate a genetic divergence of mitochondrial DNA of 19.4% and 21.7%, respectively. By the present study, a new species, Stellantchasmus dermogenysi n. sp. (Digenea: Heterophyidae), is proposed in Thailand based on molecular evidences, in addition to minor morphological differences between S. falcatus and the new species.
Adult
;
Animals
;
Body Size
;
Cricetinae
;
DNA, Mitochondrial
;
Electron Transport Complex IV
;
Female
;
Humans
;
Korea
;
Metacercariae
;
Ovary
;
Phylogeny
;
Saline Waters
;
Smegmamorpha
;
Thailand
;
Trees
;
Wrestling

Result Analysis
Print
Save
E-mail