1.Adaptation of the electron transport chain improves the biocatalytic efficiency of progesterone 17α hydroxylation.
Lanlan WANG ; Xin ZHAO ; Jie LI ; Jiaying AI ; Jing SUN ; Shuhong MAO
Chinese Journal of Biotechnology 2023;39(11):4608-4620
17α hydroxylase is a key enzyme for the conversion of progesterone to prepare various progestational drug intermediates. To improve the specific hydroxylation capability of this enzyme in steroid biocatalysis, the CYP260A1 derived from cellulose-mucilaginous bacteria Sorangium cellulosum Soce56 and the Fpr and bovine adrenal-derived Adx4-108 derived from Escherichia coli str. K-12 were used to construct a new electron transfer system for the conversion of progesterone. Selective mutation of CYP260A1 resulted in a mutant S276I with significantly enhanced 17α hydroxylase activity, and the yield of 17α-OH progesterone reached 58% after optimization of the catalytic system in vitro. In addition, the effect of phosphorylation of the ferredoxin Adx4-108 on 17α hydroxyl activity was evaluated using a targeted mutation technique, and the results showed that the mutation Adx4-108T69E transferred electrons to S276I more efficiently, which further enhanced the catalytic specificity in the C17 position of progesterone, and the yield of 17α-OH progesterone was eventually increased to 74%. This study provides a new option for the production of 17α-OH progesterone by specific transformation of bacterial-derived 17α hydroxylase, and lays a theoretical foundation for the industrial production of progesterone analogs using biotransformation method.
Animals
;
Cattle
;
Progesterone/metabolism*
;
Hydroxylation
;
Biocatalysis
;
Electron Transport
;
Mixed Function Oxygenases/metabolism*
2.4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis.
Yifang HE ; Qianzhao JI ; Zeming WU ; Yusheng CAI ; Jian YIN ; Yiyuan ZHANG ; Sheng ZHANG ; Xiaoqian LIU ; Weiqi ZHANG ; Guang-Hui LIU ; Si WANG ; Moshi SONG ; Jing QU
Protein & Cell 2023;14(3):202-216
Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.
Mesenchymal Stem Cells/physiology*
;
Cellular Senescence
;
Homeostasis
;
Cell Cycle Proteins/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Mitochondria/metabolism*
;
Electron Transport Complex III/metabolism*
;
Humans
;
Cells, Cultured
3.BCS1Neonatal growth retardation and lactic acidosis initiated by novel mutation sites in L gene.
Ming WANG ; Dong Juan WANG ; Yi SHU ; Dan ZHU ; Chao Wen YU ; Xiao Yan HE ; Lin ZOU
Chinese Journal of Preventive Medicine 2023;57(6):912-917
This study aims to analyze the clinical characteristics and genetic variations of two cases with developmental delay and lactic acidosis in a family, and to explore the relationship between genetic variations and clinical features. A retrospective analysis was conducted on the clinical characteristics of two siblings with developmental delay and lactic acidosis who were treated at the Neonatal Department of Children's Hospital of Chongqing Medical University in May 2019 and December 2021, respectively. Whole-exome sequencing was used to detect genetic variations in the affected children. Homology modeling of the BCS1L protein was performed to analyze the structural and functional changes of the protein. The correlation between genetic variations and clinical phenotypes was analyzed. The results showed that the main clinical features of the two affected children in this family were manifestations of mitochondrial respiratory chain complex Ⅲ deficiency, including prematurity, developmental delay, respiratory failure, lactic acidosis, cholestasis, liver dysfunction, renal tubular lesions, coagulation dysfunction, anemia, hypoglycemia, hypotonia, and early death. Whole-exome sequencing revealed a novel deletion mutation c.486_488delGGA (p.E163del) and a novel missense mutation c.992C>T (p.T331I) in the BCS1L gene. Structural analysis of the homology modeling showed that the compound heterozygous mutation had a significant impact on protein function. In conclusion, the novel mutation site c.992C>T (p.T331I) in the BCS1L gene is a "likely pathogenic" mutation, and the compound heterozygous mutation is closely related to the phenotype of mitochondrial respiratory chain complex Ⅲ deficiency.
Humans
;
Acidosis, Lactic/genetics*
;
Electron Transport Complex III/genetics*
;
Retrospective Studies
;
Mutation
;
Growth Disorders
;
ATPases Associated with Diverse Cellular Activities/genetics*
4.Design and applications of synthetic electroactive microbial consortia.
Baocai ZHANG ; Yiyun WANG ; Sicheng SHI ; Feng LI ; Hao SONG
Chinese Journal of Biotechnology 2023;39(3):858-880
Synthetic electroactive microbial consortia, which include exoelectrogenic and electrotrophic communities, catalyze the exchange of chemical and electrical energy in cascade metabolic reactions among different microbial strains. In comparison to a single strain, a community-based organisation that assigns tasks to multiple strains enables a broader feedstock spectrum, faster bi-directional electron transfer, and greater robustness. Therefore, the electroactive microbial consortia held great promise for a variety of applications such as bioelectricity and biohydrogen production, wastewater treatment, bioremediation, carbon and nitrogen fixation, and synthesis of biofuels, inorganic nanomaterials, and polymers. This review firstly summarized the mechanisms of biotic-abiotic interfacial electron transfer as well as biotic-biotic interspecific electron transfer in synthetic electroactive microbial consortia. This was followed by introducing the network of substance and energy metabolism in a synthetic electroactive microbial consortia designed by using the "division-of-labor" principle. Then, the strategies for engineering synthetic electroactive microbial consortiums were explored, which included intercellular communications optimization and ecological niche optimization. We further discussed the specific applications of synthetic electroactive microbial consortia. For instance, the synthetic exoelectrogenic communities were applied to biomass generation power technology, biophotovoltaics for the generation of renewable energy and the fixation of CO2. Moreover, the synthetic electrotrophic communities were applied to light-driven N2 fixation. Finally, this review prospected future research of the synthetic electroactive microbial consortia.
Microbial Consortia
;
Synthetic Biology
;
Electron Transport
;
Electricity
;
Biodegradation, Environmental
5.Advances in electrochemically active biofilm of Shewanella oneidensis MR-1.
Chinese Journal of Biotechnology 2023;39(3):881-897
Facing the increasingly severe energy shortage and environmental pollution, electrocatalytic processes using electroactive microorganisms provide a new alternative for achieving environmental-friendly production. Because of its unique respiratory mode and electron transfer ability, Shewanella oneidensis MR-1 has been widely used in the fields of microbial fuel cell, bioelectrosynthesis of value-added chemicals, metal waste treatment and environmental remediation system. The electrochemically active biofilm of S. oneidensis MR-1 is an excellent carrier for transferring the electrons of the electroactive microorganisms. The formation of electrochemically active biofilm is a dynamic and complex process, which is affected by many factors, such as electrode materials, culture conditions, strains and their metabolism. The electrochemically active biofilm plays a very important role in enhancing bacterial environmental stress resistance, improving nutrient uptake and electron transfer efficiency. This paper reviewed the formation process, influencing factors and applications of S. oneidensis MR-1 biofilm in bio-energy, bioremediation and biosensing, with the aim to facilitate and expand its further application.
Bioelectric Energy Sources/microbiology*
;
Biofilms
;
Electrodes
;
Electron Transport
;
Shewanella/metabolism*
6.Berberine targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia with IDH1 mutation.
Zhe HUANG ; Yunfu SHEN ; Wenjun LIU ; Yan YANG ; Ling GUO ; Qin YAN ; Chengming WEI ; Qulian GUO ; Xianming FAN ; Wenzhe MA
Chinese Journal of Natural Medicines (English Ed.) 2023;21(2):136-145
Metabolic reprogramming, a newly recognized trait of tumor biology, is an intensively studied prospect for oncology medicines. For numerous tumors and cancer cell subpopulations, oxidative phosphorylation (OXPHOS) is essential for their biosynthetic and bioenergetic functions. Cancer cells with mutations in isocitrate dehydrogenase 1 (IDH1) exhibit differentiation arrest, epigenetic and transcriptional reprogramming, and sensitivity to mitochondrial OXPHOS inhibitors. In this study, we report that berberine, which is widely used in China to treat intestinal infections, acted solely at the mitochondrial electron transport chain (ETC) complex I, and that its association with IDH1 mutant inhibitor (IDH1mi) AG-120 decreased mitochondrial activity and enhanced antileukemic effect in vitro andin vivo. Our study gives a scientific rationale for the therapy of IDH1 mutant acute myeloid leukemia (AML) patients using combinatory mitochondrial targeted medicines, particularly those who are resistant to or relapsing from IDH1mi.
Humans
;
Oxidative Phosphorylation
;
Berberine
;
Electron Transport
;
Mitochondria
;
Leukemia, Myeloid, Acute
;
Isocitrate Dehydrogenase
7.Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface.
Xiang LIU ; Junqi ZHANG ; Baocai ZHANG ; Chi YANG ; Feng LI ; Hao SONG
Chinese Journal of Biotechnology 2021;37(2):361-377
Exoelectrogenic microorganisms are the research basis of microbial electrochemical technologies such as microbial fuel cells, electrolytic cells and electrosynthesis. However, their applications are restricted in organic degradation, power generation, seawater desalination, bioremediation, and biosensors due to the weak ability of biofilm formation and the low extracellular electron transfer (EET) efficiency between exoelectrogenic microorganisms and electrode. Therefore, engineering optimization of interaction between exoelectrogenic microorganisms and electrode interface recently has been the research focus. In this article, we review the updated progress in strategies for enhancing microbe-electrode interactions based on microbial engineering modifications, with a focus on the applicability and limitations of these strategies. In addition, we also address research prospects of enhancing the interaction between electroactive cells and electrodes.
Bioelectric Energy Sources
;
Biofilms
;
Electrodes
;
Electron Transport
;
Electrons
8.Compound heterozygous NDUFS1 variants identified in a Chinese pedigree affected with mitochondrial respiratory chain complex I deficiency.
Chao GAO ; Baiyun CHEN ; Yang GAO ; Huichun ZHANG ; Liye SHI ; Weimeng LI ; Haibei LI ; Jiaojiao HUANG
Chinese Journal of Medical Genetics 2021;38(3):247-250
OBJECTIVE:
To explore the genetic basis for a Chinese pedigree with suspected mitochondrial functional defects through combined next-generation sequencing (NGS), copy number variation sequencing (CNV-seq), and mitochondrial DNA (mtDNA) sequencing.
METHODS:
Clinical data of the proband and his family members were collected. The patient and his parents were subjected to family-trio whole-exome sequencing (WES), CNV-seq and mtDNA variant detection. Candidate variant was verified by Sanger sequencing.
RESULTS:
Trio-WES revealed that the proband has carried compound heterozygous variants of the NDUFS1 gene, including a paternally derived c.64C>T (p.R22X) nonsense variant and a maternally derived c.845A>G (p.N282S) missense variant. Both variants may cause loss of protein function. No variant that may cause the phenotype was identified by CNV-seq and mtDNA variant analysis.
CONCLUSION
Children with suspected mitochondrial disorders may have no specific syndromes or laboratory findings. A comprehensive strategy including mtDNA testing may facilitate the diagnosis and early clinical interventions.
Child
;
China
;
DNA Copy Number Variations
;
Electron Transport
;
Humans
;
Mutation
;
NADH Dehydrogenase/genetics*
;
Pedigree
9.Research progress in regulation of exercise on mitochondrial respiratory chain spercomplex.
Yan WANG ; Hai BO ; Yong ZHANG
Acta Physiologica Sinica 2020;72(2):205-219
The mitochondrial respiratory chain supercomplex (mitoSC) is a complex super-assembly formed by free complexes on the mitochondrial inner membrane respiratory chain through the interaction between their subunits, mainly including mitoSCI+III+IV, mitoSCI+III, mitoSCIII+IV, high molecular weight mitoSC (HMW mitoSC) and mitochondrial metacomplex (mitoMC). mitoSC has been shown to improve the efficiency of electron transport in the respiratory chain and reduce the production of reactive oxygen species. The species and content of mitoSC change in different tissues in aging and many mitochondria-related diseases. By summarizing the structure and function of mitoSC in different tissues of human and mammals, and the changes of mitoSC under conditions of aging, heart disease, type 2 diabetes, cancer and genetic defects, this review focuses on the effects of exercise on mitoSC and its related regulation mechanisms in order to offer an insight for exercise interventions in mitochondria-related diseases.
Animals
;
Electron Transport
;
Exercise
;
Humans
;
Mitochondria
;
Mitochondrial Diseases
;
Mitochondrial Membranes
;
enzymology
10.Research progress in screening method of exoelectrogens.
Yuanyuan CHEN ; Baocai ZHANG ; Deguang WU ; Feng LI ; Hao SONG
Chinese Journal of Biotechnology 2020;36(12):2719-2731
Exoelectrogens are promising for a wide variety of potential applications in the areas of environment and energy, which convert chemical energy from organic matter into electrical energy by extracellular electrons transfer (EET). Microorganisms with different mechanisms and EET efficiencies have been elucidated. However, the practical applications of exoelectrogens are limited by their fundamental features. At present, it is difficult to realize the extensive application of exoelectrogens in complex and diverse environments by means of traditional engineering strategies such as rational design and directed evolution. The exoelectrogens with excellent performance in environments can be screened with efficient strain identification technologies, which promote the widespread applications of exoelectrogens. The aims of this review are to summarize the methods of screening based on different types of exoelectrogens, and to outline future research directions of strain screening.
Bioelectric Energy Sources
;
Electricity
;
Electron Transport

Result Analysis
Print
Save
E-mail