1.Multisensory Conflict Impairs Cortico-Muscular Network Connectivity and Postural Stability: Insights from Partial Directed Coherence Analysis.
Guozheng WANG ; Yi YANG ; Kangli DONG ; Anke HUA ; Jian WANG ; Jun LIU
Neuroscience Bulletin 2024;40(1):79-89
Sensory conflict impacts postural control, yet its effect on cortico-muscular interaction remains underexplored. We aimed to investigate sensory conflict's influence on the cortico-muscular network and postural stability. We used a rotating platform and virtual reality to present subjects with congruent and incongruent sensory input, recorded EEG (electroencephalogram) and EMG (electromyogram) data, and constructed a directed connectivity network. The results suggest that, compared to sensory congruence, during sensory conflict: (1) connectivity among the sensorimotor, visual, and posterior parietal cortex generally decreases, (2) cortical control over the muscles is weakened, (3) feedback from muscles to the cortex is strengthened, and (4) the range of body sway increases and its complexity decreases. These results underline the intricate effects of sensory conflict on cortico-muscular networks. During the sensory conflict, the brain adaptively decreases the integration of conflicting information. Without this integrated information, cortical control over muscles may be lessened, whereas the muscle feedback may be enhanced in compensation.
Humans
;
Muscle, Skeletal
;
Electromyography/methods*
;
Electroencephalography/methods*
;
Brain
;
Brain Mapping
2.Analysis of neural fragility in epileptic zone based on stereoelectroencephalography.
Ning YIN ; Zhepei JIA ; Le WANG ; Yilin DONG
Journal of Biomedical Engineering 2023;40(5):837-842
There are some limitations in the localization of epileptogenic zone commonly used by human eyes to identify abnormal discharges of intracranial electroencephalography in epilepsy. However, at present, the accuracy of the localization of epileptogenic zone by extracting intracranial electroencephalography features needs to be further improved. As a new method using dynamic network model, neural fragility has potential application value in the localization of epileptogenic zone. In this paper, the neural fragility analysis method was used to analyze the stereoelectroencephalography signals of 35 seizures in 20 patients, and then the epileptogenic zone electrodes were classified using the random forest model, and the classification results were compared with the time-frequency characteristics of six different frequency bands extracted by short-time Fourier transform. The results showed that the area under curve (AUC) of epileptic focus electrodes based on time-frequency analysis was 0.870 (delta) to 0.956 (high gamma), and its classification accuracy increased with the increase of frequency band, while the AUC by using neural fragility could reach 0.957. After fusing the neural fragility and the time-frequency characteristics of the γ and high γ band, the AUC could be further increased to 0.969, which was improved on the original basis. This paper verifies the effectiveness of neural fragility in identifying epileptogenic zone, and provides a theoretical reference for its further clinical application.
Humans
;
Electroencephalography/methods*
;
Epilepsy/diagnosis*
;
Seizures
;
Stereotaxic Techniques
3.A study on the application of cross-frequency coupling characteristics of neural oscillation in the diagnosis of mild cognitive impairment.
Xin LI ; Kai WANG ; Jun JING ; Liyong YIN ; Ying ZHANG ; Ping XIE
Journal of Biomedical Engineering 2023;40(5):843-851
In order to fully explore the neural oscillatory coupling characteristics of patients with mild cognitive impairment (MCI), this paper analyzed and compared the strength of the coupling characteristics for 28 MCI patients and 21 normal subjects under six different-frequency combinations. The results showed that the difference in the global phase synchronization index of cross-frequency coupling under δ-θ rhythm combination was statistically significant in the MCI group compared with the normal control group ( P = 0.025, d = 0.398). To further validate this coupling feature, this paper proposed an optimized convolutional neural network model that incorporated a time-frequency data enhancement module and batch normalization layers to prevent overfitting while enhancing the robustness of the model. Based on this optimized model, with the phase locking value matrix of δ-θ rhythm combination as the single input feature, the diagnostic accuracy of MCI patients was (95.49 ± 4.15)%, sensitivity and specificity were (93.71 ± 7.21)% and (97.50 ± 5.34)%, respectively. The results showed that the characteristics of the phase locking value matrix under the combination of δ-θ rhythms can adequately reflect the cognitive status of MCI patients, which is helpful to assist the diagnosis of MCI.
Humans
;
Electroencephalography/methods*
;
Cognitive Dysfunction/diagnosis*
;
Neural Networks, Computer
;
Sensitivity and Specificity
4.Recognition of motor imagery electroencephalogram based on flicker noise spectroscopy and weighted filter bank common spatial pattern.
Keling FEI ; Xiaoxian CAI ; Shunzhi CHEN ; Lizheng PAN ; Wei WANG
Journal of Biomedical Engineering 2023;40(6):1126-1134
Due to the high complexity and subject variability of motor imagery electroencephalogram, its decoding is limited by the inadequate accuracy of traditional recognition models. To resolve this problem, a recognition model for motor imagery electroencephalogram based on flicker noise spectrum (FNS) and weighted filter bank common spatial pattern ( wFBCSP) was proposed. First, the FNS method was used to analyze the motor imagery electroencephalogram. Using the second derivative moment as structure function, the ensued precursor time series were generated by using a sliding window strategy, so that hidden dynamic information of transition phase could be captured. Then, based on the characteristic of signal frequency band, the feature of the transition phase precursor time series and reaction phase series were extracted by wFBCSP, generating features representing relevant transition and reaction phase. To make the selected features adapt to subject variability and realize better generalization, algorithm of minimum redundancy maximum relevance was further used to select features. Finally, support vector machine as the classifier was used for the classification. In the motor imagery electroencephalogram recognition, the method proposed in this study yielded an average accuracy of 86.34%, which is higher than the comparison methods. Thus, our proposed method provides a new idea for decoding motor imagery electroencephalogram.
Brain-Computer Interfaces
;
Imagination
;
Signal Processing, Computer-Assisted
;
Electroencephalography/methods*
;
Algorithms
;
Spectrum Analysis
5.Research progress of brain-computer interface application paradigms based on rapid serial visual presentation.
Jingmin SUN ; Jiayuan MENG ; Jia YOU ; Mingming YANG ; Jing JIANG ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(6):1235-1241
Rapid serial visual presentation (RSVP) is a type of psychological visual stimulation experimental paradigm that requires participants to identify target stimuli presented continuously in a stream of stimuli composed of numbers, letters, words, images, and so on at the same spatial location, allowing them to discern a large amount of information in a short period of time. The RSVP-based brain-computer interface (BCI) can not only be widely used in scenarios such as assistive interaction and information reading, but also has the advantages of stability and high efficiency, which has become one of the common techniques for human-machine intelligence fusion. In recent years, brain-controlled spellers, image recognition and mind games are the most popular fields of RSVP-BCI research. Therefore, aiming to provide reference and new ideas for RSVP-BCI related research, this paper reviewed the paradigm design and system performance optimization of RSVP-BCI in these three fields. It also looks ahead to its potential applications in cutting-edge fields such as entertainment, clinical medicine, and special military operations.
Humans
;
Brain-Computer Interfaces
;
Electroencephalography/methods*
;
Brain/physiology*
;
Artificial Intelligence
;
Photic Stimulation/methods*
6.A neonatal intelligent regulation system based on the combination of mild hypothermia mattress and hyperbaric oxygen chamber: introduction to a patent.
Ming-Xing ZHU ; Jun-Yu JI ; Xin WANG ; Shi-Xiong CHEN ; Wei-Min HUANG
Chinese Journal of Contemporary Pediatrics 2023;25(1):86-90
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease that affects brain function in neonates. At present, mild hypothermia and hyperbaric oxygen therapy are the main methods for the treatment of neonatal HIE; however, they are independent of each other and cannot be combined for synchronous treatment, without monitoring of brain function-related physiological information. In addition, parameter setting of hyperbaric oxygen chamber and mild hypothermia mattress relies on the experience of the medical practitioner, and the parameters remain unchanged throughout the medical process. This article proposes a new device for the treatment of neonatal HIE, which has the modules of hyperbaric oxygen chamber and mild hypothermic mattress, so that neonates can receive the treatment of hyperbaric oxygen chamber and/or mild hypothermic mattress based on their conditions. Meanwhile, it can realize the real-time monitoring of various physiological information, including amplitude-integrated electroencephalogram, electrocardiogram, and near-infrared spectrum, which can monitor brain function, heart rate, rhythm, myocardial blood supply, hemoglobin concentration in brain tissue, and blood oxygen saturation. In combination with an intelligent control algorithm, the device can intelligently regulate parameters according to the physiological information of neonates and give recommendations for subsequent treatment.
Infant, Newborn
;
Humans
;
Hypothermia, Induced/methods*
;
Hypothermia/therapy*
;
Hyperbaric Oxygenation
;
Brain
;
Electroencephalography
;
Hypoxia-Ischemia, Brain/therapy*
7.A research on epilepsy source localization from scalp electroencephalograph based on patient-specific head model and multi-dipole model.
Ruowei QU ; Zhaonan WANG ; Shifeng WANG ; Yao WANG ; Le WANG ; Shaoya YIN ; Junhua GU ; Guizhi XU
Journal of Biomedical Engineering 2023;40(2):272-279
Accurate source localization of the epileptogenic zone (EZ) is the primary condition of surgical removal of EZ. The traditional localization results based on three-dimensional ball model or standard head model may cause errors. This study intended to localize the EZ by using the patient-specific head model and multi-dipole algorithms using spikes during sleep. Then the current density distribution on the cortex was computed and used to construct the phase transfer entropy functional connectivity network between different brain areas to obtain the localization of EZ. The experiment result showed that our improved methods could reach the accuracy of 89.27% and the number of implanted electrodes could be reduced by (19.34 ± 7.15)%. This work can not only improve the accuracy of EZ localization, but also reduce the additional injury and potential risk caused by preoperative examination and surgical operation, and provide a more intuitive and effective reference for neurosurgeons to make surgical plans.
Humans
;
Scalp
;
Brain Mapping/methods*
;
Epilepsy/diagnosis*
;
Electroencephalography/methods*
;
Brain
8.Automatic sleep staging based on power spectral density and random forest.
Journal of Biomedical Engineering 2023;40(2):280-285
The method of using deep learning technology to realize automatic sleep staging needs a lot of data support, and its computational complexity is also high. In this paper, an automatic sleep staging method based on power spectral density (PSD) and random forest is proposed. Firstly, the PSDs of six characteristic waves (K complex wave, δ wave, θ wave, α wave, spindle wave, β wave) in electroencephalogram (EEG) signals were extracted as the classification features, and then five sleep states (W, N1, N2, N3, REM) were automatically classified by random forest classifier. The whole night sleep EEG data of healthy subjects in the Sleep-EDF database were used as experimental data. The effects of using different EEG signals (Fpz-Cz single channel, Pz-Oz single channel, Fpz-Cz + Pz-Oz dual channel), different classifiers (random forest, adaptive boost, gradient boost, Gaussian naïve Bayes, decision tree, K-nearest neighbor), and different training and test set divisions (2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, single subject) on the classification effect were compared. The experimental results showed that the effect was the best when the input was Pz-Oz single-channel EEG signal and the random forest classifier was used, no matter how the training set and test set were transformed, the classification accuracy was above 90.79%. The overall classification accuracy, macro average F1 value, and Kappa coefficient could reach 91.94%, 73.2% and 0.845 respectively at the highest, which proved that this method was effective and not susceptible to data volume, and had good stability. Compared with the existing research, our method is more accurate and simpler, and is suitable for automation.
Humans
;
Random Forest
;
Bayes Theorem
;
Sleep Stages
;
Sleep
;
Electroencephalography/methods*
9.Automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning.
Yunzhi TIAN ; Qiang ZHOU ; Wan LI
Journal of Biomedical Engineering 2023;40(2):286-294
The existing automatic sleep staging algorithms have the problems of too many model parameters and long training time, which in turn results in poor sleep staging efficiency. Using a single channel electroencephalogram (EEG) signal, this paper proposed an automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning (TL-SDResNet). Firstly, a total of 30 single-channel (Fpz-Cz) EEG signals from 16 individuals were selected, and after preserving the effective sleep segments, the raw EEG signals were pre-processed using Butterworth filter and continuous wavelet transform to obtain two-dimensional images containing its time-frequency joint features as the input data for the staging model. Then, a ResNet50 pre-trained model trained on a publicly available dataset, the sleep database extension stored in European data format (Sleep-EDFx) was constructed, using a stochastic depth strategy and modifying the output layer to optimize the model structure. Finally, transfer learning was applied to the human sleep process throughout the night. The algorithm in this paper achieved a model staging accuracy of 87.95% after conducting several experiments. Experiments show that TL-SDResNet50 can accomplish fast training of a small amount of EEG data, and the overall effect is better than other staging algorithms and classical algorithms in recent years, which has certain practical value.
Humans
;
Sleep Stages
;
Algorithms
;
Sleep
;
Wavelet Analysis
;
Electroencephalography/methods*
;
Machine Learning
10.Clinical efficacy of mild therapeutic hypothermia with different rewarming time on neonatal hypoxic-ischemic encephalopathy: a prospective randomized controlled study.
Yu-Xin LIN ; Xiao FENG ; Yi-Dan ZHANG ; Wan-Rong HONG ; Hong-Ying ZHAO
Chinese Journal of Contemporary Pediatrics 2023;25(4):350-356
OBJECTIVES:
To investigate the clinical efficacy of mild therapeutic hypothermia (MTH) with different rewarming time on neonatal hypoxic-ischemic encephalopathy (HIE).
METHODS:
A prospective study was performed on 101 neonates with HIE who were born and received MTH in Zhongshan Hospital, Xiamen University, from January 2018 to January 2022. These neonates were randomly divided into two groups: MTH1 group (n=50; rewarming for 10 hours at a rate of 0.25°C/h) and MTH2 group (n=51; rewarming for 25 hours at a rate of 0.10°C/h). The clinical features and the clinical efficacy were compared between the two groups. A binary logistic regression analysis was used to identify the factors influencing the occurrence of normal sleep-wake cycle (SWC) on amplitude-integrated electroencephalogram (aEEG) at 25 hours of rewarming.
RESULTS:
There were no significant differences between the MTH1 and MTH2 groups in gestational age, 5-minute Apgar score, and proportion of neonates with moderate/severe HIE (P>0.05). Compared with the MTH2 group, the MTH1 group tended to have a normal arterial blood pH value at the end of rewarming, a significantly shorter duration of oxygen dependence, a significantly higher proportion of neonates with normal SWC on aEEG at 10 and 25 hours of rewarming, and a significantly higher Neonatal Behavioral Neurological Assessment score on days 5, 12, and 28 after birth (P<0.05), while there was no significant difference in the incidence rate of rewarming-related seizures between the two groups (P>0.05). There were no significant differences between the two groups in the incidence rate of neurological disability at 6 months of age and the score of Bayley Scale of Infant Development at 3 and 6 months of age (P>0.05). The binary logistic regression analysis showed that prolonged rewarming time (25 hours) was not conducive to the occurrence of normal SWC (OR=3.423, 95%CI: 1.237-9.469, P=0.018).
CONCLUSIONS
Rewarming for 10 hours has a better short-term clinical efficacy than rewarming for 25 hours. Prolonging rewarming time has limited clinical benefits on neonates with moderate/severe HIE and is not conducive to the occurrence of normal SWC, and therefore, it is not recommended as a routine treatment method.
Infant, Newborn
;
Infant
;
Child
;
Humans
;
Child, Preschool
;
Prospective Studies
;
Rewarming
;
Hypoxia-Ischemia, Brain/therapy*
;
Hypothermia, Induced/methods*
;
Treatment Outcome
;
Electroencephalography/methods*

Result Analysis
Print
Save
E-mail