1.Development of intelligent monitoring system based on Internet of Things and wearable technology and exploration of its clinical application mode.
Lixuan LI ; Hong LIANG ; Yong FAN ; Wei YAN ; Muyang YAN ; Desen CAO ; Zhengbo ZHANG
Journal of Biomedical Engineering 2023;40(6):1053-1061
Wearable monitoring, which has the advantages of continuous monitoring for a long time with low physiological and psychological load, represents a future development direction of monitoring technology. Based on wearable physiological monitoring technology, combined with Internet of Things (IoT) and artificial intelligence technology, this paper has developed an intelligent monitoring system, including wearable hardware, ward Internet of Things platform, continuous physiological data analysis algorithm and software. We explored the clinical value of continuous physiological data using this system through a lot of clinical practices. And four value points were given, namely, real-time monitoring, disease assessment, prediction and early warning, and rehabilitation training. Depending on the real clinical environment, we explored the mode of applying wearable technology in general ward monitoring, cardiopulmonary rehabilitation, and integrated monitoring inside and outside the hospital. The research results show that this monitoring system can be effectively used for monitoring of patients in hospital, evaluation and training of patients' cardiopulmonary function, and management of patients outside hospital.
Humans
;
Artificial Intelligence
;
Internet of Things
;
Wearable Electronic Devices
;
Monitoring, Physiologic/methods*
;
Electrocardiography
;
Internet
2.Anti-motion Artifact Performance Test System for Ambulatory ECG Monitoring Equipment.
Liping QIN ; Yi WU ; Ke XU ; Xiangrui ZHAO
Chinese Journal of Medical Instrumentation 2023;47(6):624-629
Anti-motion artifact is one of the most important properties of ambulatory ECG monitoring equipment. At present, there is a lack of standardized means to test the performance of anti-motion artifact. ECG simulator and special conductive leather are used to build the simulator, it is used to simulate human skin, to generate ECG signal input for the ECG monitoring equipment attached to it. The mechanical arm and fixed support are used to build a motion simulation system to fix the conductive leather. The mechanical arm is programmed to simulate various motion states of the human body, so that the ECG monitoring equipment can produce corresponding motion artifacts. The collected ECG signals are read wirelessly, observed, analyzed and compared, and the anti-motion artifact performance of ECG monitoring equipment is evaluated. The test results show that by artificially creating the small difference between the two groups of ambulatory ECG monitoring equipment, the system can accurately test the interference signals introduced under the conditions of controlled movement such as tension and torsion, and compare the advantages and disadvantages. The research shows that the test system can provide convenient and accurate verification means for the research of optimizing anti-motion interference.
Humans
;
Artifacts
;
Signal Processing, Computer-Assisted
;
Electrocardiography, Ambulatory/methods*
;
Electrocardiography
;
Motion
3.Association between clinical phenotypes of hypertrophic cardiomyopathy and Ca2+ gene variation gene variation.
Jia ZHAO ; Bo WANG ; Lu YAO ; Jing WANG ; Xiao Nan LU ; Chang Ting LIANG ; Sheng Jun TA ; Xue Li ZHAO ; Jiao LIU ; Li Wen LIU
Chinese Journal of Cardiology 2023;51(5):497-503
Objective: To observe the association between clinical phenotypes of hypertrophic cardiomyopathy (HCM) patients and a rare calcium channel and regulatory gene variation (Ca2+ gene variation) and to compare clinical phenotypes of HCM patients with Ca2+ gene variation, a single sarcomere gene variation and without gene variation and to explore the influence of rare Ca2+ gene variation on the clinical phenotypes of HCM. Methods: Eight hundred forty-two non-related adult HCM patients diagnosed for the first time in Xijing Hospital from 2013 to 2019 were enrolled in this study. All patients underwent exon analyses of 96 hereditary cardiac disease-related genes. Patients with diabetes mellitus, coronary artery disease, post alcohol septal ablation or septal myectomy, and patients who carried sarcomere gene variation of uncertain significance or carried>1 sarcomere gene variation or carried>1 Ca2+ gene variation, with HCM pseudophenotype or carrier of ion channel gene variations other than Ca2+ based on the genetic test results were excluded. Patients were divided into gene negative group (no sarcomere or Ca2+ gene variants), sarcomere gene variation group (only 1 sarcomere gene variant) and Ca2+ gene variant group (only 1 Ca2+ gene variant). Baseline data, echocardiography and electrocardiogram data were collected for analysis. Results: A total of 346 patients were enrolled, including 170 patients without gene variation (gene negative group), 154 patients with a single sarcomere gene variation (sarcomere gene variation group) and 22 patients with a single rare Ca2+ gene variation (Ca2+ gene variation group). Compared with gene negative group, patients in Ca2+ gene variation group had higher blood pressure and higher percentage of family history of HCM and sudden cardiac death (P<0.05); echocardiographic results showed that patients in Ca2+ gene variation group had thicker ventricular septum ((23.5±5.8) mm vs. (22.3±5.7) mm, P<0.05); electrocardiographic results showed that patients in Ca2+ gene variation group had prolonged QT interval ((416.6±23.1) ms vs. (400.6±47.2) ms, P<0.05) and higher RV5+SV1 ((4.51±2.26) mv vs. (3.50±1.65) mv, P<0.05). Compared with sarcomere gene variation group, patients in Ca2+ gene variation group had later onset age and higher blood pressure (P<0.05); echocardiographic results showed that there was no significant difference in ventricular septal thickness between two groups; patients in Ca2+ gene variation group had lower percentage of left ventricular outflow tract pressure gradient>30 mmHg (1 mmHg=0.133 kPa, 22.8% vs. 48.1%, P<0.05) and the lower early diastolic peak velocity of the mitral valve inflow/early diastolic peak velocity of the mitral valve annulus (E/e') ratio ((13.0±2.5) vs. (15.9±4.2), P<0.05); patients in Ca2+ gene variation group had prolonged QT interval ((416.6±23.1) ms vs. (399.0±43.0) ms, P<0.05) and lower percentage of ST segment depression (9.1% vs. 40.3%, P<0.05). Conclusion: Compared with gene negative group, the clinical phenotype of HCM is more severe in patients with rare Ca2+ gene variation; compared with patients with sarcomere gene variation, the clinical phenotype of HCM is milder in patients with rare Ca2+ gene variation.
Humans
;
Cardiac Surgical Procedures/methods*
;
Cardiomyopathy, Hypertrophic/genetics*
;
Echocardiography
;
Electrocardiography
;
Phenotype
;
Sarcomeres/genetics*
;
Adult
4.Anesthesia Depth Monitoring Based on Anesthesia Monitor with the Help of Artificial Intelligence.
Yi GUO ; Qiuchen DU ; Mengmeng WU ; Guanhua LI
Chinese Journal of Medical Instrumentation 2023;47(1):43-46
OBJECTIVE:
To use the low-cost anesthesia monitor for realizing anesthesia depth monitoring, effectively assist anesthesiologists in diagnosis and reduce the cost of anesthesia operation.
METHODS:
Propose a monitoring method of anesthesia depth based on artificial intelligence. The monitoring method is designed based on convolutional neural network (CNN) and long and short-term memory (LSTM) network. The input data of the model include electrocardiogram (ECG) and pulse wave photoplethysmography (PPG) recorded in the anesthesia monitor, as well as heart rate variability (HRV) calculated from ECG, The output of the model is in three states of anesthesia induction, anesthesia maintenance and anesthesia awakening.
RESULTS:
The accuracy of anesthesia depth monitoring model under transfer learning is 94.1%, which is better than all comparison methods.
CONCLUSIONS
The accuracy of this study meets the needs of perioperative anesthesia depth monitoring and the study reduces the operation cost.
Artificial Intelligence
;
Neural Networks, Computer
;
Heart Rate
;
Electrocardiography
;
Photoplethysmography/methods*
;
Anesthesia
5.Intelligent Electrocardiogram Analysis in Medicine: Data, Methods, and Applications.
Yu-Xia GUAN ; Ying AN ; Feng-Yi GUO ; Wei-Bai PAN ; Jian-Xin WANG
Chinese Medical Sciences Journal 2023;38(1):38-48
Electrocardiogram (ECG) is a low-cost, simple, fast, and non-invasive test. It can reflect the heart's electrical activity and provide valuable diagnostic clues about the health of the entire body. Therefore, ECG has been widely used in various biomedical applications such as arrhythmia detection, disease-specific detection, mortality prediction, and biometric recognition. In recent years, ECG-related studies have been carried out using a variety of publicly available datasets, with many differences in the datasets used, data preprocessing methods, targeted challenges, and modeling and analysis techniques. Here we systematically summarize and analyze the ECG-based automatic analysis methods and applications. Specifically, we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes. Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications. Finally, we elucidated some of the challenges in ECG analysis and provided suggestions for further research.
Humans
;
Arrhythmias, Cardiac/diagnosis*
;
Electrocardiography/methods*
;
Algorithms
6.Screening for asymptomatic atrial fibrillation in elder community populations in Dalian: a single center study.
Yi Heng YANG ; Rong Qian XU ; Rong Feng ZHANG ; Yu Shan WEI ; Li HONG ; Jie SUN ; Tao CONG ; Yun Long XIA
Chinese Journal of Cardiology 2023;51(10):1056-1062
Objective: We aimed to determine the epidemiological characteristics of asymptomatic AF in elder community population (≥65 years old) to analyze the detection rate of different screening methods. Methods: The study was a prospective cohort study. The elder (≥65 years old) residents who voluntarily participated in free physical examination in Dalian community were selected. The participants were randomly divided into screening group (including intensive screening group and single screening group) and control group. The control group received interrogation, medical history collection and routine 12-lead electrocardiogram (ECG) examination. Screening group received an additional single-lead ambulatory ECG equipment worn for 5-7 days. Intensive screening group received two equal-length wearings in 2020 and 2021 respectively, while one screening group only wore once in 2020. Results: Finally 3 340 residents ((70.7±5.0) years old) which consisted of 1 488 males (44.55%) were enrolled. There were 1 945 residents in screening group, including 859 in intensive screening group and 1 086 in one-time screening group. The control group included 1 395 people. Detection rate of asymptomatic AF was significantly higher in screening group than control group (79(4.06%) vs. 24(1.72%), P<0.001). Higher detection rate was found in screening group than control group in AF risk factors (1 or 2-3) subgroups and CHA2DS2-VASc score (2-3 or≥4) subgroups (P<0.05). Additionally, no difference was found between intensive screening group and single screening group (42(4.89%) vs. 37(3.41%), P=0.100). Intensive screening increased detection rate (7(6.93%) vs. 1(0.58%), P=0.009) only in residents those with low thrombosis risk (CHA2DS2-VaSc<2). Conclusions: Screening in elderly (≥65 years old) can significantly improve the detection rate of asymptomatic AF by wearing single lead dynamic ECG device. The rate increased significantly with the increase of risk factors associated with AF by single screening. In addition, repeat screening of the same method may only improve detection rates in the group with low risk thrombotic scores and non-combination of AF risk factors.Screening methods that are appropriate for different populations may require further exploration.
Male
;
Humans
;
Aged
;
Atrial Fibrillation/epidemiology*
;
Prospective Studies
;
Electrocardiography
;
Risk Factors
;
Stroke
;
Risk Assessment
;
Mass Screening/methods*
7.Screening for asymptomatic atrial fibrillation in elder community populations in Dalian: a single center study.
Yi Heng YANG ; Rong Qian XU ; Rong Feng ZHANG ; Yu Shan WEI ; Li HONG ; Jie SUN ; Tao CONG ; Yun Long XIA
Chinese Journal of Cardiology 2023;51(10):1056-1062
Objective: We aimed to determine the epidemiological characteristics of asymptomatic AF in elder community population (≥65 years old) to analyze the detection rate of different screening methods. Methods: The study was a prospective cohort study. The elder (≥65 years old) residents who voluntarily participated in free physical examination in Dalian community were selected. The participants were randomly divided into screening group (including intensive screening group and single screening group) and control group. The control group received interrogation, medical history collection and routine 12-lead electrocardiogram (ECG) examination. Screening group received an additional single-lead ambulatory ECG equipment worn for 5-7 days. Intensive screening group received two equal-length wearings in 2020 and 2021 respectively, while one screening group only wore once in 2020. Results: Finally 3 340 residents ((70.7±5.0) years old) which consisted of 1 488 males (44.55%) were enrolled. There were 1 945 residents in screening group, including 859 in intensive screening group and 1 086 in one-time screening group. The control group included 1 395 people. Detection rate of asymptomatic AF was significantly higher in screening group than control group (79(4.06%) vs. 24(1.72%), P<0.001). Higher detection rate was found in screening group than control group in AF risk factors (1 or 2-3) subgroups and CHA2DS2-VASc score (2-3 or≥4) subgroups (P<0.05). Additionally, no difference was found between intensive screening group and single screening group (42(4.89%) vs. 37(3.41%), P=0.100). Intensive screening increased detection rate (7(6.93%) vs. 1(0.58%), P=0.009) only in residents those with low thrombosis risk (CHA2DS2-VaSc<2). Conclusions: Screening in elderly (≥65 years old) can significantly improve the detection rate of asymptomatic AF by wearing single lead dynamic ECG device. The rate increased significantly with the increase of risk factors associated with AF by single screening. In addition, repeat screening of the same method may only improve detection rates in the group with low risk thrombotic scores and non-combination of AF risk factors.Screening methods that are appropriate for different populations may require further exploration.
Male
;
Humans
;
Aged
;
Atrial Fibrillation/epidemiology*
;
Prospective Studies
;
Electrocardiography
;
Risk Factors
;
Stroke
;
Risk Assessment
;
Mass Screening/methods*
8.ST segment morphological classification based on support vector machine multi feature fusion.
Haiman DU ; Ting BIAN ; Peng XIONG ; Jianli YANG ; Jieshuo ZHANG ; Xiuling LIU
Journal of Biomedical Engineering 2022;39(4):702-712
ST segment morphology is closely related to cardiovascular disease. It is used not only for characterizing different diseases, but also for predicting the severity of the disease. However, the short duration, low energy, variable morphology and interference from various noises make ST segment morphology classification a difficult task. In this paper, we address the problems of single feature extraction and low classification accuracy of ST segment morphology classification, and use the gradient of ST surface to improve the accuracy of ST segment morphology multi-classification. In this paper, we identify five ST segment morphologies: normal, upward-sloping elevation, arch-back elevation, horizontal depression, and arch-back depression. Firstly, we select an ST segment candidate segment according to the QRS wave group location and medical statistical law. Secondly, we extract ST segment area, mean value, difference with reference baseline, slope, and mean squared error features. In addition, the ST segment is converted into a surface, the gradient features of the ST surface are extracted, and the morphological features are formed into a feature vector. Finally, the support vector machine is used to classify the ST segment, and then the ST segment morphology is multi-classified. The MIT-Beth Israel Hospital Database (MITDB) and the European ST-T database (EDB) were used as data sources to validate the algorithm in this paper, and the results showed that the algorithm in this paper achieved an average recognition rate of 97.79% and 95.60%, respectively, in the process of ST segment recognition. Based on the results of this paper, it is expected that this method can be introduced in the clinical setting in the future to provide morphological guidance for the diagnosis of cardiovascular diseases in the clinic and improve the diagnostic efficiency.
Algorithms
;
Arrhythmias, Cardiac
;
Databases, Factual
;
Electrocardiography/methods*
;
Humans
;
Support Vector Machine
9.Three-dimensional volume rendering for dynamic characteristics of secundum atrial septal defect during various phases of the cardiac cycle and the impact on occluder selection.
Hui Jun SONG ; Shi Guo LI ; Qiong LIU ; Jing Lin JIN ; Kai YANG ; Jing ZHANG ; Zhong Ying XU ; Xiang Bin PAN ; Shi Hua ZHAO
Chinese Journal of Cardiology 2022;50(8):805-810
Objective: To investigate the dynamic change of the secundum atrial septal defect (ASD) throughout the cardiac cycle, and assess its impact on occluder selection. Methods: This study retrospectively analyzed 35 patients with ASD who received electrocardiogram-gated coronary CT angiography (CCTA) throughout the cardiac cycle as well as interventional closure therapy in Fuwai Hospital from December 2016 to December 2019. The raw data were reconstructed into 20 phasic images of RR intervals (RRI) ranging from 0 to 95% in an increment of 5% and transmitted to a workstation for postprocessing. For each phase image, CT virtual endoscopy reconstruction technique (CTVE) was used to provide views of ASD. Axial sequence assisted CT volumetric measurement (CTAS) was used to calculate the maximum dimensions in axial planes (Da) and in superior-inferior direction (Db). Using a formula for converting circumference to diameter, the equivalent circle dimensions were calculated (De, De=minor axis+2 (major axis-minor axis)/3). Taking the data of 75% RRI phase, the patients were divided into Da75%RRI≥Db75%RRI group and Da75%RRI
Adult
;
Cardiac-Gated Imaging Techniques
;
Computed Tomography Angiography
;
Coronary Angiography
;
Electrocardiography/methods*
;
Female
;
Heart Septal Defects, Atrial/surgery*
;
Humans
;
Imaging, Three-Dimensional
;
Male
;
Middle Aged
;
Retrospective Studies
;
Septal Occluder Device
10.Effectiveness investigation on left bundle branch area pacing in 10 infants and toddlers.
Jing Hao LI ; Xiao Mei LI ; He JIANG ; Yi ZHANG ; Mei Ting LI ; Hui Ming ZHOU
Chinese Journal of Pediatrics 2022;60(8):810-814
Objective: To explore the feasibility, safety and effectiveness of left bundle branch area pacing (LBBAP) in children aged ≤3 years. Methods: A total of 10 children aged ≤3 years who were diagnosed with brady arrhythmia in the First Hospital of Tsinghua University from September 2020 to September 2021 were retrospectively analyzed. All the children met the indication of permanent pacemaker implantation and underwent LBBAP successfully. The intraoperative data (pacing parameters, electrocardiogram and radiographic imaging), cardiac ultrasound data and clinical data during regular postoperative follow-up were recorded. The preoperative and postoperative data were compared using matched samples t test. Results: Ten children (aged (1.6±0.7) years with weight of (10.3±2.5) kg) underwent LBBAP successfully. The QRS wave duration on the postoperative electrocardiogram was (100±9) ms, and the percentage of ventricular pacing was (97±7)%. The postoperative follow-up period was 6 (6, 12) months. At 1 week after operation, the left ventricular end-diastolic diameter Z scores in these children reduced significantly compared with those before operation (1.3±0.6 vs. 3.6±1.1, t=9.37, P<0.001). During the follow-up period, cardiac function was normal and the last left ventricular ejection fraction was (66±4)% in all children. At the last follow-up, the pacing threshold of the 10 children was smaller than 1.0 V and was acceptable. Compared with the intraoperative baseline values, the pacing threshold was slightly higher ((0.8±0.1) vs. (0.5±0.1) V, t=-5.27, P=0.001). However, no significant difference was found regarding sensing threshold ((16±5) vs. (14±4) mV, t=-0.83, P=0.426) and impedance ((584±88) vs. (652±86) Ω, t=2.26, P=0.050). During follow-up, no electrode related complications were recorded. Conclusions: LBBAP is safe and effective for infants and toddlers. Narrow QRS pacing with stable pacing parameters and normal cardiac function could be achieved postoperatively.
Bundle of His
;
Bundle-Branch Block
;
Cardiac Pacing, Artificial/methods*
;
Child, Preschool
;
Electrocardiography/methods*
;
Humans
;
Retrospective Studies
;
Stroke Volume
;
Treatment Outcome
;
Ventricular Function, Left

Result Analysis
Print
Save
E-mail