1.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
2.Quantifying Brain Atrophy Using a CSF-Focused Segmentation Approach
Kyoung Yoon LIM ; Seongbeom PARK ; Duk L. NA ; Sang Won SEO ; Min Young CHUN ; Kichang KWAK ;
Dementia and Neurocognitive Disorders 2025;24(2):115-125
Background:
and Purpose: Brain atrophy, characterized by sulcal widening and ventricular enlargement, is a hallmark of neurodegenerative diseases such as Alzheimer’s disease. Visual assessments are subjective and variable, while automated methods struggle with subtle intensity differences and standardization, highlighting limitations in both approaches. This study aimed to develop and evaluate a novel method focusing on cerebrospinal fluid (CSF) regions by assessing segmentation accuracy, detecting stage-specific atrophy patterns, and testing generalizability to unstandardized datasets.
Methods:
We utilized T1-weighted magnetic resonance imaging data from 3,315 participants from Samsung Medical Center and 1,439 participants from other hospitals. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), and W-scores were calculated for each region of interest (ROI) to assess stage-specific atrophy patterns.
Results:
The segmentation demonstrated high accuracy, with average DSC values exceeding 0.9 for ventricular and hippocampal regions and above 0.8 for cortical regions. Significant differences in W-scores were observed across cognitive stages (cognitively unimpaired, mild cognitive impairment, dementia of Alzheimer’s type) for all ROIs (all, p<0.05). Similar trends were observed in the images from other hospitals, confirming the algorithm’s generalizability to datasets without prior standardization.
Conclusions
This study demonstrates the robustness and clinical applicability of a novel CSF-focused segmentation method for assessing brain atrophy. The method provides a scalable and objective framework for evaluating structural changes across cognitive stages and holds potential for broader application in neurodegenerative disease research and clinical practice.
3.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
4.Quantifying Brain Atrophy Using a CSF-Focused Segmentation Approach
Kyoung Yoon LIM ; Seongbeom PARK ; Duk L. NA ; Sang Won SEO ; Min Young CHUN ; Kichang KWAK ;
Dementia and Neurocognitive Disorders 2025;24(2):115-125
Background:
and Purpose: Brain atrophy, characterized by sulcal widening and ventricular enlargement, is a hallmark of neurodegenerative diseases such as Alzheimer’s disease. Visual assessments are subjective and variable, while automated methods struggle with subtle intensity differences and standardization, highlighting limitations in both approaches. This study aimed to develop and evaluate a novel method focusing on cerebrospinal fluid (CSF) regions by assessing segmentation accuracy, detecting stage-specific atrophy patterns, and testing generalizability to unstandardized datasets.
Methods:
We utilized T1-weighted magnetic resonance imaging data from 3,315 participants from Samsung Medical Center and 1,439 participants from other hospitals. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), and W-scores were calculated for each region of interest (ROI) to assess stage-specific atrophy patterns.
Results:
The segmentation demonstrated high accuracy, with average DSC values exceeding 0.9 for ventricular and hippocampal regions and above 0.8 for cortical regions. Significant differences in W-scores were observed across cognitive stages (cognitively unimpaired, mild cognitive impairment, dementia of Alzheimer’s type) for all ROIs (all, p<0.05). Similar trends were observed in the images from other hospitals, confirming the algorithm’s generalizability to datasets without prior standardization.
Conclusions
This study demonstrates the robustness and clinical applicability of a novel CSF-focused segmentation method for assessing brain atrophy. The method provides a scalable and objective framework for evaluating structural changes across cognitive stages and holds potential for broader application in neurodegenerative disease research and clinical practice.
5.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
6.Quantifying Brain Atrophy Using a CSF-Focused Segmentation Approach
Kyoung Yoon LIM ; Seongbeom PARK ; Duk L. NA ; Sang Won SEO ; Min Young CHUN ; Kichang KWAK ;
Dementia and Neurocognitive Disorders 2025;24(2):115-125
Background:
and Purpose: Brain atrophy, characterized by sulcal widening and ventricular enlargement, is a hallmark of neurodegenerative diseases such as Alzheimer’s disease. Visual assessments are subjective and variable, while automated methods struggle with subtle intensity differences and standardization, highlighting limitations in both approaches. This study aimed to develop and evaluate a novel method focusing on cerebrospinal fluid (CSF) regions by assessing segmentation accuracy, detecting stage-specific atrophy patterns, and testing generalizability to unstandardized datasets.
Methods:
We utilized T1-weighted magnetic resonance imaging data from 3,315 participants from Samsung Medical Center and 1,439 participants from other hospitals. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), and W-scores were calculated for each region of interest (ROI) to assess stage-specific atrophy patterns.
Results:
The segmentation demonstrated high accuracy, with average DSC values exceeding 0.9 for ventricular and hippocampal regions and above 0.8 for cortical regions. Significant differences in W-scores were observed across cognitive stages (cognitively unimpaired, mild cognitive impairment, dementia of Alzheimer’s type) for all ROIs (all, p<0.05). Similar trends were observed in the images from other hospitals, confirming the algorithm’s generalizability to datasets without prior standardization.
Conclusions
This study demonstrates the robustness and clinical applicability of a novel CSF-focused segmentation method for assessing brain atrophy. The method provides a scalable and objective framework for evaluating structural changes across cognitive stages and holds potential for broader application in neurodegenerative disease research and clinical practice.
7.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
8.Quantifying Brain Atrophy Using a CSF-Focused Segmentation Approach
Kyoung Yoon LIM ; Seongbeom PARK ; Duk L. NA ; Sang Won SEO ; Min Young CHUN ; Kichang KWAK ;
Dementia and Neurocognitive Disorders 2025;24(2):115-125
Background:
and Purpose: Brain atrophy, characterized by sulcal widening and ventricular enlargement, is a hallmark of neurodegenerative diseases such as Alzheimer’s disease. Visual assessments are subjective and variable, while automated methods struggle with subtle intensity differences and standardization, highlighting limitations in both approaches. This study aimed to develop and evaluate a novel method focusing on cerebrospinal fluid (CSF) regions by assessing segmentation accuracy, detecting stage-specific atrophy patterns, and testing generalizability to unstandardized datasets.
Methods:
We utilized T1-weighted magnetic resonance imaging data from 3,315 participants from Samsung Medical Center and 1,439 participants from other hospitals. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), and W-scores were calculated for each region of interest (ROI) to assess stage-specific atrophy patterns.
Results:
The segmentation demonstrated high accuracy, with average DSC values exceeding 0.9 for ventricular and hippocampal regions and above 0.8 for cortical regions. Significant differences in W-scores were observed across cognitive stages (cognitively unimpaired, mild cognitive impairment, dementia of Alzheimer’s type) for all ROIs (all, p<0.05). Similar trends were observed in the images from other hospitals, confirming the algorithm’s generalizability to datasets without prior standardization.
Conclusions
This study demonstrates the robustness and clinical applicability of a novel CSF-focused segmentation method for assessing brain atrophy. The method provides a scalable and objective framework for evaluating structural changes across cognitive stages and holds potential for broader application in neurodegenerative disease research and clinical practice.
9.Correction: 2023 Korean Society of Echocardiography position paper for diagnosis and management of valvular heart disease, part I: aortic valve disease
Sun Hwa LEE ; Se Jung YOON ; Byung Joo SUN ; Hyue Mee KIM ; Hyung Yoon KIM ; Sahmin LEE ; Chi Young SHIM ; Eun Kyoung KIM ; Dong Hyuk CHO ; Jun Bean PARK ; Jeong Sook SEO ; Jung Woo SON ; In Cheol KIM ; Sang Hyun LEE ; Ran HEO ; Hyun Jung LEE ; Jae Hyeong PARK ; Jong Min SONG ; Sang Chol LEE ; Hyungseop KIM ; Duk Hyun KANG ; Jong Won HA ; Kye Hun KIM ;
Journal of Cardiovascular Imaging 2024;32(1):34-
10.Contemporary diagnosis and treatment of valvular heart disease in Korea: a nationwide hospital‑based registry study
Hyung Yoon KIM ; Hee Jeong LEE ; In‑Cheol KIM ; Jung‑Woo SON ; Jun‑Bean PARK ; Sahmin LEE ; Eun Kyoung KIM ; Seong‑Mi PARK ; Woo‑Baek CHUNG ; Jung Sun CHO ; Jin‑Sun PARK ; Jeong‑Sook SEO ; Sun Hwa LEE ; Byung Joo SUN ; Chi Young SHIM ; Hyungseop KIM ; Kye Hun KIM ; Duk‑Hyun KANG ; Jong‑Won HA ;
Journal of Cardiovascular Imaging 2024;32(1):37-
Background:
This study was designed to determine the current status of diagnosis and treatment of valvular heart disease (VHD) in Korea.
Methods:
A nationwide registry study was conducted in 45 hospitals in Korea involving adult patients with at least moderate VHD as determined by echocardiography carried out between September and October of 2019. Of a total of 4,094 patients with at least moderate VHD, 1,482 had severe VHD (age, 71.3 ± 13.5 years; 49.1% male). Echocar‑ diographic data used for the diagnosis of each case of VHD were analyzed. Experts from each center determined the diagnosis and treatment strategy for VHD based on current guidelines and institutional policy. The clinical out‑ come was in-hospital mortality.
Results:
Each valve underwent surgical or transcatheter intervention in 19.3% cases of severe mitral stenosis, 31.4% cases of severe primary mitral regurgitation (MR), 7.5% cases of severe secondary MR, 43.7% cases of severe aortic stenosis, 27.5% cases of severe aortic regurgitation, and 7.2% cases of severe tricuspid regurgitation. The overall inhospital mortality rate for patients with severe VHD was 5.4%, and for secondary severe MR and severe tricuspid regur‑ gitation, the rates were 9.0% and 7.5%, respectively, indicating a poor prognosis. In-hospital mortality occurred in 73 of the 1,244 patients (5.9%) who received conservative treatment and in 18 of the 455 patients (4.0%) who received a surgical or transcatheter intervention, which was significantly lower in the intervention group (P = 0.037).
Conclusions
This study provides important information about the current status of VHD diagnosis and treatment through a nationwide registry in Korea and helps to define future changes.

Result Analysis
Print
Save
E-mail