1.Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism.
Jifeng LI ; Haolin GUO ; Ying DONG ; Shuo YUAN ; Xiaotong WEI ; Yuxin ZHANG ; Lu DONG ; Fei WANG ; Ting BAI ; Yong YANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):4-14
Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Liver Diseases/drug therapy*
;
Antioxidants
;
Polysaccharides/therapeutic use*
;
Medicine, Chinese Traditional
2.Mechanism of Qilongtian Capsules in treatment of acute lung injury based on network pharmacology prediction and experimental validation.
Ying XIE ; Xue-Rong SU ; Tong ZHOU ; Yi-Yao LIANG ; Yang-Qian WU ; Yi WAN ; Tu-Lin LU ; Xiao-Li ZHAO ; Zheng-Yan LI
China Journal of Chinese Materia Medica 2023;48(15):4187-4200
This study aimed to explore the mechanism of Qilongtian Capsules in treating acute lung injury(ALI) based on network pharmacology prediction and in vitro experimental validation. Firstly, UPLC-Q-TOF-MS/MS was used to analyze the main chemical components of Qilongtian Capsules, and related databases were used to obtain its action targets and ALI disease targets. STRING database was used to build a protein-protein interaction(PPI) network. Metascape database was used to conduct enrichment analysis of Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG). AutoDock software was used to perform molecular docking verification on the main active components and key targets. Then, the RAW264.7 cells were stimulated with lipopolysaccharide(LPS) for in vitro experiments. Cell viability was measured by MTT and ROS level was measured by DCFH-DA. NO content was measured by Griess assay, and IL-1β, IL-6, and TNF-α mRNA expression was detected by RT-PCR. The predicted targets were preliminarily verified by investigating the effect of Qilongtian Capsules on downstream cytokines. Eighty-four compounds were identified by UPLC-Q-TOF-MS/MS. Through database retrieval, 44 active components with 589 target genes were screened out. There were 560 ALI disease targets, and 65 intersection targets. PPI network topology analysis revealed 10 core targets related to ALI, including STAT3, JUN, VEGFA, CASP3, and MMP9. KEGG enrichment analysis showed that Qilongtian Capsules mainly exerted an anti-ALI effect by regulating cancer pathway, AGE-RAGE, MAPK, and JAK-STAT signaling pathways. The results of molecular docking showed that the main active components in Qilongtian Capsules, including crenulatin, ginsenoside F_1, ginsenoside Rb_1, ginsenoside Rd, ginsenoside Rg_1, ginsenoside Rg_3, notoginsenoside Fe, notoginsenoside G, notoginsenoside R_1, notoginsenoside R_2, and notoginsenoside R_3, had good binding affinities with the corresponding protein targets STAT3, JUN, VEGFA, CASP3, and MMP9. Cellular experiments showed that Qilongtian Capsules at 0.1, 0.25, and 0.5 mg·mL~(-1) reduced the release of NO, while Qilongtian Capsules at 0.25 and 0.5 mg·mL~(-1) reduced ROS production, down-regulated mRNA expression of IL-1β, IL-6, TNF-α, and inhibited the inflammatory cascade. In summary, Qilongtian Capsules may exert therapeutic effects on ALI through multiple components and targets.
Humans
;
Tumor Necrosis Factor-alpha
;
Ginsenosides
;
Caspase 3
;
Matrix Metalloproteinase 9
;
Interleukin-6
;
Molecular Docking Simulation
;
Network Pharmacology
;
Reactive Oxygen Species
;
Tandem Mass Spectrometry
;
Acute Lung Injury/genetics*
;
Capsules
;
RNA, Messenger
;
Drugs, Chinese Herbal/pharmacology*
3.Quality evaluation of Compound Cheqian Tablets based on UPLC-Q-TOF-MS/MS, network pharmacology and "double external standards" QAMS.
Kang WANG ; Pei LIU ; Si-Fan WANG ; Jie-Yu ZHANG ; Zhi-Zhi HU ; Yu-Qi MEI ; Ying-Bo YANG ; Zheng-Tao WANG ; Li YANG
China Journal of Chinese Materia Medica 2023;48(17):4675-4685
The Compound Cheqian Tablets are derived from Cheqian Power in Comprehensive Recording of Divine Assistance, and they are made by modern technology with the combination of Plantago asiatica and Coptis chinensis. To investigate the material basis of Compound Cheqian Tablets in the treatment of diabetic nephropathy, in this study, the chemical components of Compound Cheqian Tablets were characterized and analyzed by UPLC-Q-TOF-MS/MS, and a total of 48 chemical components were identified. The identified chemical compounds were analyzed by network pharmacology. By validating with previous literature, six bioactive compounds including acteoside, isoacteoside, coptisine, magnoflorine, palmatine, and berberine were confirmed as the index components for qua-lity evaluation. Furthermore, the content of the six components in the Compound Cheqian Tablets was determined by the "double external standards" quantitative analysis of multi-components by single marker(QAMS), and the relative correction factor of isoacteoside was calculated as 1.118 by using acteoside as the control; the relative correction factors of magnoflorine, palmatine, and berberine were calculated as 0.729, 1.065, and 1.126, respectively, by using coptisine as the control, indicating that the established method had excellent stability under different conditions. The results obtained by the "double external standards" QAMS approximated those obtained by the external standard method. This study qualitatively characterized the chemical components in the Compound Cheqian Tablets by applying UPLC-Q-TOF-MS/MS and screened the pharmacodynamic substance basis for the treatment of diabetic nephropathy via network pharmacology, and primary pharmacodynamic substance groups were quantitatively analyzed by the "double external stan-dards" QAMS method, which provided a scientific basis for clarifying the pharmacodynamic substance basis and quality control of Compound Cheqian Tablets.
Humans
;
Tandem Mass Spectrometry
;
Berberine/pharmacology*
;
Chromatography, High Pressure Liquid/methods*
;
Network Pharmacology
;
Diabetic Nephropathies
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Tablets
4.Active components and potential mechanism of Taohong Siwu Decoction in regulating ischemic stroke based on target cell trapping combined with network pharmacology, molecular docking, and experimental validation.
Lin-Feng TANG ; Hao CHANG ; Dan-Dan WANG ; Zhu-Qing LIU ; Lan HAN ; Dai-Yin PENG
China Journal of Chinese Materia Medica 2023;48(17):4761-4773
The potential anti-stroke active components in Taohong Siwu Decoction(THSWD) were identified by target cell trapping coupled with ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS). The underlying mechanism of active components in THSWD in the treatment of ischemic stroke(IS) was explored by network pharmacology, molecular docking, and experimental validation. The UPLC-Q-TOF-MS technology combined with the UNIFI data analysis platform was used to analyze the composition of the cellular fragmentation fluid after co-incubation of THSWD with target cells. The targets of potential active components and IS were collected by network pharmacology, and the common targets underwent protein-protein interaction(PPI), Gene Ontology(GO), and Kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway enrichment analyses. The target cell trapping component-core target-signaling pathway network was constructed, and the active components were molecularly docked to the top targets in the PPI network, followed by pharmacodynamic validation in vitro. Fifteen active components were identified in the target cellular fragmentation fluid, including bicyclic monoterpenes, cyanoglycosides, flavonols, quinoid chalcones, phenylpropanoids, and tannins. As revealed by the analysis of network pharmacology, THSWD presumably regulated PI3K-AKT, FoxO, MAPK, Jak-STAT, VEGF, HIF-1, and other signaling pathways to affect inflammatory cascade reaction, angiogenesis, oxidative stress, pyroptosis, apoptosis, and other pathological processes via paeoniflorin, butylphthalide, dehydrated safflower yellow B, 3,4-dicaffeoylquinic acid, amygdalin, paeoniflorin, and ligusticolactone. Molecular docking and in vitro pharmacodynamic validation revealed that the target cell trapping active components could promote neovascularization in rat brain microvascular endothelial cells(rBMECs) in the oxygen-glucose deprivation/reoxygenation(OGD/R) model. The application of target cell trapping coupled with UPLC-Q-TOF-MS technology can rapidly screen out the potential active components in THSWD. The active components of THSWD can be predicted to intervene in the pathogenesis of IS through network pharmacology, and molecular docking combined with experimental validation can further clarify the efficacy, thus providing a theoretical basis for research ideas on the pharmacodynamic substance basis of traditional Chinese medicine compounds.
Animals
;
Rats
;
Ischemic Stroke/drug therapy*
;
Molecular Docking Simulation
;
Network Pharmacology
;
Endothelial Cells
;
Phosphatidylinositol 3-Kinases
;
Drugs, Chinese Herbal/pharmacology*
5.Mechanism of Chaenomelis Fructus in treatment of rheumatoid arthritis based on network pharmacology and experimental verification.
Zhi-Hao DUAN ; Can JIN ; Ying DENG ; Jin-Lang LIU ; Jie WANG ; Shi-Gang LI ; You ZHOU
China Journal of Chinese Materia Medica 2023;48(18):4852-4863
The material basis and mechanism of Chaenomelis Fructus in the treatment of rheumatoid arthritis(RA) were explored by network pharmacology, and the potential anti-RA targets of Chaenomelis Fructus were verified by molecular docking and animal experiments. The active components and targets of Chaenomelis Fructus were searched against the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. GeneCards, DisGeNET, and OMIM were used to obtain RA-related targets. The common targets shared by Chaenomelis Fructus and RA were considered as the potential targets of Chaenomelis Fructus in the treatment of RA. Cytoscape 3.9.0 was employed to establish a "traditional Chinese medicine-active component-common target-disease" network. The protein-protein interaction(PPI) network was established by STRING, and the core genes were visualized by RStudio 4.1.0. DAVID was used for Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment to predict and visualize the involved signaling pathways. Molecular docking was carried out with the active components screened out as ligands and RA core genes as the targets. Finally, the prediction results were verified by animal experiments. Four main active components of Chaenomelis Fructus were obtained, which corresponded to 137 targets. Chaenomelis Fructus and RA shared 37 common targets. GO annotation yielded 239 terms(P<0.05), and KEGG pathway enrichment analysis screened out 94 signaling pathways(P<0.05), mainly involving interleukin-17(IL-17), tumor necrosis factor, Toll-like receptor, and nuclear factor-kappa B(NF-κB) signaling pathways. Molecular docking results showed that the main active components of Chaenomelis Fructus bound well with the core targets of RA. The results of animal experiments proved that Chaenomelis Fructus can alleviate joint swelling in the mice with RA. The results of ELISA showed that Chaenomelis Fructus lowered the levels of interleukin-6(IL-6) and interleukin-1β(IL-1β). Western blot showed that Chaenomelis Fructus down-regulated the protein level of vascular endothelial growth factor A(VEGFA). Chaenomelis Fructus exerts anti-inflammatory effect and reduces pannus formation by regulating the core targets such as VEGFA, IL-1β, and IL6 in the treatment of RA. The findings of this study provide new ideas for the future treatment of RA with Chaenomelis Fructus.
Animals
;
Mice
;
Network Pharmacology
;
Vascular Endothelial Growth Factor A
;
Molecular Docking Simulation
;
Arthritis, Rheumatoid/genetics*
;
Tumor Necrosis Factor-alpha
;
NF-kappa B
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
6.Effect of Juanbi Qianggu Formula on biological behaviors of fibroblast-like synoviocytes in rheumatoid arthritis by regulating FGFR1 signaling pathway based on network pharmacology and cell function experiments.
Xiao-Hui MENG ; Sheng ZHONG ; Hai-Hui HAN ; Qi SHI ; Song-Tao SUN ; Lian-Bo XIAO
China Journal of Chinese Materia Medica 2023;48(18):4864-4873
This study aimed to explore the molecular mechanism of Juanbi Qianggu Formula(JBQGF), an empirical formula formulated by the prestigious doctor in traditional Chinese medicine, in the treatment of rheumatoid arthritis based on network pharmacology and cell function experiments. The main active components and targets of JBQGF were obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and Encyclopedia of Traditional Chinese Medicine(ETCM), and the core targets underwent functional enrichment analysis and signaling pathway analysis. Cytoscape 3.6.0 was used to construct a visualized "active component-target-signaling pathway" network of JBQGF. After screening, nine potential pathways of JBQGF were obtained, mainly including G protein-coupled receptor signaling pathway and tyrosine kinase receptor signaling pathway. As previously indicated, the fibroblast growth factor receptor 1(FGFR1) signaling pathway was highly activated in active fibroblast-like synoviocytes(FLS) in rheumatoid arthritis, and cell and animal experiments demonstrated that inhibition of the FGFR1 signaling pathway could significantly reduce joint inflammation and joint destruction in collagen-induced arthritis(CIA) rats. In terms of the tyrosine kinase receptor signal transduction pathway, the analysis of its target genes revealed that FGFR1 might be a potential target of JBQGF for rheumatoid arthritis treatment. The biological effect of JBQGF by inhibiting FGFR1 phosphorylation was preliminarily verified by Western blot, Transwell invasion assay, and pannus erosion assay, thereby inhibiting matrix metalloproteinase 2(MMP2) and receptor activator of nuclear factor-κB ligand(RANKL) and suppressing the invasion of fibroblasts in rheumatoid arthritis and erosive effect of pannus bone. This study provides ideas for searching potential targets of rheumatoid arthritis treatment and TCM drugs through network pharmacology.
Rats
;
Animals
;
Synoviocytes
;
Matrix Metalloproteinase 2/metabolism*
;
Network Pharmacology
;
Receptor, Fibroblast Growth Factor, Type 1/therapeutic use*
;
Arthritis, Rheumatoid/genetics*
;
Signal Transduction
;
Fibroblasts
;
Drugs, Chinese Herbal/therapeutic use*
7.Research progress in clinical application and pharmacological effect of Yiyi Fuzi Baijiang Powder.
Liu-Yi WEI ; Er-Wei HAO ; Xiao-Tao HOU ; Liu-Zhi WEI ; Zhe QIN ; Xiao YANG ; Qian XIAO ; Shi-du YAN ; Jia-Gang DENG
China Journal of Chinese Materia Medica 2023;48(18):4893-4901
Yiyi Fuzi Baijiang Powder(YFBP), originating from Synopsis of the Golden Chamber, is a classic prescription composed of Coicis Semen, Aconiti Lateralis Radix Praeparata, and Patriniae Herba for the treatment of abscesses and pus discharge. This article presented a systematic analysis of the clinical application of YFBP, including the indicated diseases, the number of cases, efficacy, dosage, administration methods, and compatibility with other drugs. The analysis reveals that YFBP has a wide range of clinical applications. It is commonly used, often with modifications or in combination with western medicine, for diseases in the fields of gastroente-rology, gynecology, urology, dermatology, and others. And most of the Traditional Chinese Medicine(TCM) evidence involved in these diseases are damp-heat evudence. The prescription shows rich variations in clinical administration methods, and most of which are the treatment of aqueous decoction of it. The therapeutic effect is also significant, and the total effective rate of clinical treatment is re-latively high. Additionally, this article summarized the pharmacological research on YFBP and found that it possessed various pharmacological effects, including anti-inflammatory, antioxidant, anticancer, and immune-modulating properties. Finally, correlation analysis was conducted on the main diseases, TCM types, prescription doses, pharmacological effects and action targets of YFBP, which to show the relationship between these five aspects in a visual form, reflecting the relationship between its clinical application and modern pharmacological effects. These findings provide a reference basis for further development and research on YFBP.
Powders
;
Drugs, Chinese Herbal/pharmacology*
;
Medicine, Chinese Traditional
;
Diterpenes
;
Aconitum
8.Q-marker prediction of resin ethanol extract of Gegen Qinlian Decoction based on characteristic spectrum and network pharmacology.
Xiao-Qin YANG ; Shu-Yang WU ; Min LI ; Jia-Mei CHEN ; Yan-Fen CHENG ; Yi-Tao WANG ; Yi-Han WU ; Jin-Ming ZHANG
China Journal of Chinese Materia Medica 2023;48(18):4993-5002
The resin ethanol extract of Gegen Qinlian Decoction(GGQLD) has been found to significantly alleviate the intestinal toxicity caused by Irinotecan, but further research is needed to establish its overall quality and clinical medication standards. This study aimed to establish an HPLC characteristic fingerprint of the resin ethanol extract of GGQLD, predicted the targets and signaling pathways of its pharmacological effects based on network pharmacology, identified core compounds with pharmacological relevance, and analyzed potential quality markers(Q-markers) of the resin eluate of GGQLD for relieving Irinotecan-induced toxicity. By considering the uniqueness, measurability, and traceability of Q-markers based on the "five principles" of Q-markers and combining them with network pharmacology techniques, the overall efficacy of the resin ethanol extract of GGQLD can be characterized. Preliminary predictions suggested that the four components of puerarin, berberine, baicalin, and baicalein might serve as potential Q-markers for the resin etha-nol extract of GGQLD. This study provides a basis and references for the quality control and clinical mechanism of the resin ethanol extract of GGQLD.
Irinotecan
;
Network Pharmacology
;
Drugs, Chinese Herbal/therapeutic use*
9.Mechanism of Astragali Radix-Curcumae Rhizoma in treating gastric cancer based on network pharmacology and experimental verification.
Xi-Ying TAN ; Jing TAO ; Yu ZHANG ; Ru-Xin GU
China Journal of Chinese Materia Medica 2023;48(18):5056-5067
This study aims to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in the treatment of gastric cancer based on network pharmacology. Further, the SGC7901 cell model of gastric cancer was employed to validate the efficacy and key targets of the herb pair. Firstly, the CCK-8 assay was employed to evaluate the direct effect of HQEZ on the proliferation of gastric cancer SGC7901 cells. Then, network pharmacology methods were employed to investigate the active ingredients, key targets, and key signaling pathways involved in the treatment of gastric cancer with HQEZ. The results showed that HQEZ contained 18 potential active ingredients, such as quercetin, naringenin, and curcumin. The results of gene ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment suggested that the main targets of HQEZ in treating gastric cancer were involved in the regulation of protein serine/threonine kinase activity, activation of mitogen-activated protein kinase(MAPK) activity, cysteine-type endopeptidase activity, and negative regulation of protein serine/threonine kinase activity. The hypoxia-inducible factor-1(HIF-1) signaling pathway, ATP-binding cassette(ABC) transporters, cytochrome P450-mediated metabolism of xenobiotics, p53 signaling pathway, and cell apoptosis were key signaling pathways of HQEZ in treating gastric cancer. The cell experiments demonstrated that HQEZ significantly downregulated the expression of ATP-binding cassette subfamily B member 1(ABCB1), epidermal growth factor receptor(EGFR), phosphorylated serine/threonine kinase(p-AKT), hypoxia inducible factor 1 subunit alpha(HIF1A), B-cell lymphoma 2(BCL2), breast cancer susceptibility protein 1(BRCA1), DNA polymerase theta(POLH), ribonucleotide reductase M1(RRM1), and excision repair cross-complementation group 1(ERCC1), and upregulated the expression of tumor protein P53(TP53) and cysteinyl aspartate-specific proteinase(CAPS3). Finally, a multivariate COX regression model was adopted to study the relationship between gene expression and clinical information data of gastric cancer patients in the TCGA database, which demonstrated that the key targets of HQEZ were associated with the poor prognosis in gastric cancer patients. Further feature selection using the LASSO algorithm showed that EGFR, HIF1A, TP53, POLH, RRM1, and ERCC1 were closely associated with the survival of gastric can-cer patients. In conclusion, HQEZ regulates the expression of genes involved in DNA repair, survival, and apoptosis in gastric cancer cells via multiple targets and pathways, assisting the treatment of gastric cancer.
Humans
;
Stomach Neoplasms/genetics*
;
Tumor Suppressor Protein p53
;
Network Pharmacology
;
ErbB Receptors
;
Protein Serine-Threonine Kinases
;
Serine
;
Adenosine Triphosphate
;
Molecular Docking Simulation
;
Drugs, Chinese Herbal/pharmacology*
10.Mechanism of pregnancy-induced thymus involution and regeneration and medication rules of postpartum prescriptions.
Yao-Ying SHU ; Xie XU ; Zhuo-Wen ZHANG ; Jian-Li GAO
China Journal of Chinese Materia Medica 2023;48(16):4275-4284
In order to prevent the maternal immune defenses to the semi-allogeneic fetus, the maternal body will present a special adaptive immune system change represented by acute thymic involution(ATI) during pregnancy, which can be quickly regenerated after delivery. The ATI during pregnancy is related to the level of sex hormones, which is mainly caused by progesterone. Pregnancy-induced ATI is manifested as the continuous shrinkage of thymus volume, especially the cortex, and the wrinkle and phagocytosis of the subcapsular cortical thymic epithelial cells(cTECs), while other thymic epithelial cells(TECs) remain unchanged. The postpartum thymus is regenerated by the co-mediation of forkhead box N1(FOXN1) as well as its target genes chemokine(C-C motif) ligand 25(CCL25), chemokine(C-X-C motif) ligand 12(CXCL12), δ-like ligand 4(DLL4), cathepsin L(CTSL), and serine protease 16(PRSS16). Once the postpartum thymus is poorly repaired, immune dysfunction of the maternal body and several puerperal diseases will be induced, seriously endangering the survival of the mother and the newborn. In traditional Chinese medicine(TCM), Qi and blood are the cornerstone of pregnancy, and the thymus plays a key role in regulating Qi and blood. The deficiency of Qi and blood during pregnancy and childbirth is closely related to the abnormal ATI during pregnancy and the poor regeneration of the postpartum thymus. Based on this theory, TCM has profound academic ideas and rich clinical experience in postpartum recuperation. Based on the systematic description of the mechanism of ATI regeneration during pregnancy, as well as data mining and analysis of two classic gynecological works of TCM, Wan's Gynecology and Fu Qing-zhu's Treatise on Gynecology, this study found that the commonly used TCM for postpartum included Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Glycyrrhizae Radix et Rhizoma, and Chuanxiong Rhizoma. Among them, Ginseng Radix et Rhizoma, Angelicae Sinensis Radix, and Chuanxiong Rhizoma are high-frequency TCMs with positive effects on postpartum recovery.However, the mechanism of these TCMs in promoting postpartum thymus regeneration needs further investigation.
Female
;
Infant, Newborn
;
Humans
;
Pregnancy
;
Ligands
;
Drugs, Chinese Herbal/pharmacology*
;
Medicine, Chinese Traditional
;
Prescriptions
;
Postpartum Period
;
Chemokines

Result Analysis
Print
Save
E-mail