1.Genetic Subtypes and Pretreatment Drug Resistance in the Newly Reported Human Immunodeficiency Virus-Infected Men Aged≥50 Years Old in Guangxi.
Ning-Ye FANG ; Wen-Cui WEI ; Jian-Jun LI ; Ping CEN ; Xian-Xiang FENG ; Dong YANG ; Kai-Ling TANG ; Shu-Jia LIANG ; Yu-Lan SHAO ; Hua-Xiang LU ; He JIANG ; Qin MENG ; Shuai-Feng LIU ; Qiu-Ying ZHU ; Huan-Huan CHEN ; Guang-Hua LAN ; Shi-Xiong YANG ; Li-Fang ZHOU ; Jing-Lin MO ; Xian-Min GE
Acta Academiae Medicinae Sinicae 2023;45(3):399-404
Objective To analyze the genetic subtypes of human immunodeficiency virus (HIV) and the prevalence of pretreatment drug resistance in the newly reported HIV-infected men in Guangxi. Methods The stratified random sampling method was employed to select the newly reported HIV-infected men aged≥50 years old in 14 cities of Guangxi from January to June in 2020.The pol gene of HIV-1 was amplified by nested reverse transcription polymerase chain reaction and then sequenced.The mutation sites associated with drug resistance and the degree of drug resistance were then analyzed. Results A total of 615 HIV-infected men were included in the study.The genetic subtypes of CRF01_AE,CRF07_BC,and CRF08_BC accounted for 57.4% (353/615),17.1% (105/615),and 22.4% (138/615),respectively.The mutations associated with the resistance to nucleoside reverse transcriptase inhibitors (NRTI),non-nucleoside reverse transcriptase inhibitors (NNRTI),and protease inhibitors occurred in 8 (1.3%),18 (2.9%),and 0 patients,respectively.M184V (0.7%) and K103N (1.8%) were the mutations with the highest occurrence rates for the resistance to NRTIs and NNRTIs,respectively.Twenty-two (3.6%) patients were resistant to at least one type of inhibitors.Specifically,4 (0.7%),14 (2.3%),4 (0.7%),and 0 patients were resistant to NRTIs,NNRTIs,both NRTIs and NNRTIs,and protease inhibitors,respectively.The pretreatment resistance to NNRTIs had much higher frequency than that to NRTIs (2.9% vs.1.3%;χ2=3.929,P=0.047).The prevalence of pretreatment resistance to lamivudine,zidovudine,tenofovir,abacavir,rilpivirine,efavirenz,nevirapine,and lopinavir/ritonavir was 0.8%, 0.3%, 0.7%, 1.0%, 1.3%, 2.8%, 2.9%, and 0, respectively. Conclusions CRF01_AE,CRF07_BC,and CRF08_BC are the three major strains of HIV-infected men≥50 years old newly reported in Guangxi,2020,and the pretreatment drug resistance demonstrates low prevalence.
Male
;
Humans
;
Middle Aged
;
Reverse Transcriptase Inhibitors/therapeutic use*
;
HIV Infections/drug therapy*
;
Drug Resistance, Viral/genetics*
;
China/epidemiology*
;
Mutation
;
HIV-1/genetics*
;
Protease Inhibitors/therapeutic use*
;
Genotype
2.Antimicrobial resistance and plasmid-mediated colistin resistance mechanism of diarrheagenic Escherichia coli recovered from foods in parts of China in 2020.
Yu Jie HU ; Yang XIAO ; Shuang Jia DONG ; Jian Yun ZHAO ; Hui LI ; Da Jin YANG ; Yin Ping DONG ; Jin XU ; Feng Qin LI
Chinese Journal of Preventive Medicine 2023;57(4):557-565
Objective: To investigate the antimicrobial resistance of food-borne diarrheagenic Escherichia coli (DEC) and the prevalence of mcr genes that mediates mobile colistin resistance in parts of China, 2020. Methods: For 91 DEC isolates recovered from food sources collected from Fujian province, Hebei province, Inner Mongolia Autonomous Region and Shanghai city in 2020, Vitek2 Compact biochemical identification and antimicrobial susceptibility testing platform was used for the detection of antimicrobial susceptibility testing (AST) against to 18 kinds of antimicrobial compounds belonging to 9 categories, and multi-polymerase chain reaction (mPCR) was used to detect the mcr-1-mcr-9 genes, then a further AST, whole genome sequencing (WGS) and bioinformatics analysis were platformed for these DEC isolates which were PCR positive for mcr genes. Results: Seventy in 91 isolates showed different antimicrobial resistance levels to the drugs tested with a resistance rate of 76.92%. The isolates showed the highest antimicrobial resistance rates to ampicillin (69.23%, 63/91) and trimethoprim-sulfamethoxazole (59.34%, 54/91), respectively. The multiple drug-resistant rate was 47.25% (43/91). Two mcr-1 gene and ESBL (extended-spectrum beta-lactamase) positive EAEC (enteroaggregative Escherichia coli) strains were detected. One of them was identified as serotype of O11:H6, which showed a resistance profile to 25 tested drugs referring to 10 classes, and 38 drug resistance genes were predicted by genome analysis. The other one was O16:H48 serotype, which was resistant to 21 tested drugs belonging to 7 classes and carried a new variant of mcr-1 gene (mcr-1.35). Conclusion: An overall high-level antimicrobial resistance was found among foodborne DEC isolates recovered from parts of China in 2020, and so was the MDR (multi-drug resistance) condition. MDR strains carrying multiple resistance genes such as mcr-1 gene were detected, and a new variant of mcr-1 gene was also found. It is necessary to continue with a dynamic monitoring on DEC contamination and an ongoing research into antimicrobial resistance mechanisms.
Humans
;
Colistin/pharmacology*
;
Anti-Bacterial Agents/pharmacology*
;
Escherichia coli Infections/epidemiology*
;
Escherichia coli Proteins/genetics*
;
Drug Resistance, Bacterial/genetics*
;
China/epidemiology*
;
Escherichia coli
;
Plasmids/genetics*
;
Microbial Sensitivity Tests
3.Analysis of characteristics of drug resistance gene mutation in HBV RT region of hepatitis B infected patients.
Cheng Rong BIAN ; Jing Jing LI ; Ying Wei SONG ; Li Juan SONG ; Jing ZHAO ; Ru Meng DONG ; Lan ZHANG ; Ya GAO ; Jia Yang LI ; Wen Wen YUAN ; Li Li ZHAO ; Tian Tian XU ; Shi Qi MEN ; Bo An LI
Chinese Journal of Preventive Medicine 2023;57(6):868-876
Objective: This article investigated the clinical characteristics and distribution of drug resistance mutation sites in HBV RT region of hepatitis B infected patients. Methods: Retrospective analysis was made on 1 948 patients with HBV infection, who had been tested for NAs resistance mutation and had a medical history of NAs in the Laboratory Department of the Fifth Medical Center of the PLA General Hospital from January 2020 to December 2021. Basic clinical information and drug resistance related mutation information were recorded. Meanwhile, the serological index data of hepatitis B were collected. Drug resistance gene mutant group and non-mutated group were grouped according to whether the drug resistance genes had a mutation in HBV RT region, and the clinical characteristics and genotype distribution of the two groups were statistically analyzed. The pattern of drug resistance gene mutation, number of mutation sites, drug resistance type and mutation of NAs resistance-related sites were analyzed in 917 patients with drug resistance gene mutation in HBV RT region. χ2 Inspection was used for counting data. Meanwhile, two independent samples t-test and Wilcoxon rank sum test were used for measurement data. Results: Among the 1 948 patients with chronic HBV infection, 917 patients had drug resistance gene mutation in RT region (47.07%). The proportion of patients with acute hepatitis B and CHB in HBV RT resistance gene mutant group was lower than that in the non-mutated group, while the proportion of patients with HBV-related cirrhosis was higher than that in the non-mutated group, these differences were statistically significant. Compared with the non-mutated group in HBV RT region, the age, the positive rates of HBeAg and HBV DNA, and HBV DNA load of these patients were increased in drug resistance gene mutant group, these differences were statistically significant. Genotypes of patients in both groups were dominated by C, followed by B and D. The proportion of patients with genotype C in HBV RT drug resistance gene mutant group was higher than that of non-mutated group, the difference was statistically significant. There were 53 gene mutation patterns in 917 patients with drug resistance gene mutation in HBV RT region, and the main pattern was rtL180M+rtM204V+rtS202G (9.70%). The mutation sites were dominated by 3 (20.74%). There were 5 types of drug resistance, LAM+Ldt (21.25%) was the most. Among the 18 sites that were clearly associated with LAM, ADV, ETV and Ldt resistance in the HBV RT region, 14 sites were mutated, and the most common mutation sites were rtL180M, rtM204V, rtM204 and rtS202G. what's more, the proportion of patients with NAs drug resistance was LAM>Ldt>ETV>ADV. Conclusion: In order to prevent adverse consequences of this study such as disease recurrence or disease progression caused by HBV drug resistance, HBV infected patients, who have long-term use of NAs antiviral therapy, should monitor the level of HBV DNA and drug resistance genes in HBV RT region in order to optimize the treatment plan in time or guide individualized treatment.
Humans
;
Hepatitis B virus/genetics*
;
Hepatitis B, Chronic
;
Antiviral Agents/therapeutic use*
;
DNA, Viral/therapeutic use*
;
Retrospective Studies
;
Mutation
;
Drug Resistance, Viral/genetics*
;
Lamivudine/therapeutic use*
4.Clinical distribution and drug resistance characteristics of carbapenem-resistant Klebsiella pneumoniae.
Cui Fang SHEN ; Xiao Xiang ZHANG ; Chao Chi BAO
Chinese Journal of Preventive Medicine 2023;57(3):416-421
To explore the clinical distribution and drug resistance characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP), in order to provide reference for the prevention and treatment of CRKP infection. Retrospective analysis was performed on 510 clinical isolates of CRKP from January 2017 to December 2021, and strain identification and drug sensitivity tests were conducted by MALDI-TOF mass spectrometer and VITEK-2 Compact microbial drug sensitivity analyzer. The carbapenemase phenotype of CRKP strain was detected by carbapenemase inhibitor enhancement test. The CRKP strain was further categorized by immunochromogenic method and polymerase chain reaction (PCR) was used for gene detection. The results showed that 302 strains (59.2%) were derived from sputum, 127 strains (24.9%) from urine and 47 strains (9.2%) from blood. 231 (45.3%) were mainly distributed in intensive care, followed by 108 (21.2%) in respiratory medicine and 79 (15.5%) in neurosurgery. Drug susceptibility test result shows that the resistant rate of tigecycline increased from 1.0% in 2017 to 10.1% in 2021, the difference was statistically significant (χ2=14.444,P<0.05). The results of carbapenemase inhibitor enhancement test showed that 461 carbapenemase strains (90.4%) of 510 CRKP strains, including 450 serinase strains (88.2%), 9 metalloenzyme strains (1.8%), and 2 strains (0.4%) produced both serine and metalloenzyme. 49 strains (9.6%) did not produce enzymes. Further typing by immunochromogenic assay showed that 461 CRKP strains were KPC 450 (97.6%) and IMP 2 (0.4%). 7 NDM (1.5%); 2 strains of KPC+NDM (0.4%); PCR results were as follows: 450 strains of blaKPC (97.6%), 2 strains of blaIMP (0.4%), 7 strains of blaNDM (1.5%), and 2 strains of blaKPC+NDM (0.4%). In conclusion, CRKP strains mainly originated from sputum specimens and distributed in intensive care department, and the drug resistance characteristics were mainly KPC type in carbapenemase production. Clinical microbiology laboratory should strengthen the monitoring of CRKP strains, so as to provide reference for preventing CRKP infection and reducing the production of bacterial drug resistance.
Anti-Bacterial Agents/pharmacology*
;
Carbapenems/pharmacology*
;
Klebsiella pneumoniae/genetics*
;
Hospital Distribution Systems
;
Retrospective Studies
;
Microbial Sensitivity Tests
;
beta-Lactamases/genetics*
;
Bacterial Proteins/genetics*
;
Drug Resistance, Bacterial/genetics*
5.The past, present and future of tuberculosis treatment.
Kefan BI ; Dan CAO ; Cheng DING ; Shuihua LU ; Hongzhou LU ; Guangyu ZHANG ; Wenhong ZHANG ; Liang LI ; Kaijin XU ; Lanjuan LI ; Ying ZHANG
Journal of Zhejiang University. Medical sciences 2023;51(6):657-668
Tuberculosis (TB) is an ancient infectious disease. Before the availability of effective drug therapy, it had high morbidity and mortality. In the past 100 years, the discovery of revolutionary anti-TB drugs such as streptomycin, isoniazid, pyrazinamide, ethambutol and rifampicin, along with drug combination treatment, has greatly improved TB control globally. As anti-TB drugs were widely used, multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis emerged due to acquired genetic mutations, and this now presents a major problem for effective treatment. Genes associated with drug resistance have been identified, including katG mutations in isoniazid resistance, rpoB mutations in rifampin resistance, pncA mutations in pyrazinamide resistance, and gyrA mutations in quinolone resistance. The major mechanisms of drug resistance include loss of enzyme activity in prodrug activation, drug target alteration, overexpression of drug target, and overexpression of the efflux pump. During the disease process, Mycobacterium tuberculosis may reside in different microenvironments where it is expose to acidic pH, low oxygen, reactive oxygen species and anti-TB drugs, which can facilitate the development of non-replicating persisters and promote bacterial survival. The mechanisms of persister formation may include toxin-antitoxin (TA) modules, DNA protection and repair, protein degradation such as trans-translation, efflux, and altered metabolism. In recent years, the use of new anti-TB drugs, repurposed drugs, and their drug combinations has greatly improved treatment outcomes in patients with both drug-susceptible TB and MDR/XDR-TB. The importance of developing more effective drugs targeting persisters of Mycobacterium tuberculosis is emphasized. In addition, host-directed therapeutics using both conventional drugs and herbal medicines for more effective TB treatment should also be explored. In this article, we review historical aspects of the research on anti-TB drugs and discuss the current understanding and treatments of drug resistant and persistent tuberculosis to inform future therapeutic development.
Humans
;
Pyrazinamide/therapeutic use*
;
Isoniazid/therapeutic use*
;
Antitubercular Agents/therapeutic use*
;
Tuberculosis, Multidrug-Resistant/microbiology*
;
Mycobacterium tuberculosis/genetics*
;
Tuberculosis/drug therapy*
;
Rifampin/therapeutic use*
;
Mutation
;
Drug Resistance, Multiple, Bacterial/genetics*
6.Effect and Mechanism of Atorvastatin on Reversing Drug Resistance in Leukemia by Regulating Glycolysis through PTEN/mTOR Pathway.
Journal of Experimental Hematology 2023;31(1):38-44
OBJECTIVE:
To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.
METHODS:
HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.
RESULTS:
CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.
CONCLUSION
Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.
Humans
;
Atorvastatin/pharmacology*
;
PTEN Phosphohydrolase/pharmacology*
;
Sincalide/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Doxorubicin/pharmacology*
;
Apoptosis
;
RNA, Small Interfering/pharmacology*
;
Glycolysis
;
Glucose/therapeutic use*
;
Cell Proliferation
7.Bone Marrow Adipocytes Promote the Survival of Multiple Myeloma Cells and Up-Regulate Their Chemoresistance.
Xiao-Qian WEI ; Yang-Min ZHANG ; Yu SUN ; Hua-Yu LING ; Yuan-Ning HE ; Jin-Xiang FU
Journal of Experimental Hematology 2023;31(1):154-161
OBJECTIVE:
To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM.
METHODS:
Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor.
RESULTS:
The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells.
CONCLUSION
The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.
Humans
;
Osteogenesis/genetics*
;
Bone Marrow/metabolism*
;
Multiple Myeloma/metabolism*
;
Drug Resistance, Neoplasm
;
Peroxisome Proliferator-Activated Receptors/pharmacology*
;
Cell Differentiation
;
Adipogenesis
;
Cytokines/metabolism*
;
Adipocytes/metabolism*
;
Bone Marrow Cells/metabolism*
;
Cells, Cultured
;
PPAR gamma/pharmacology*
;
Tumor Microenvironment
8.Research Progress of DNA Methylation in Cisplatin Resistance in Lung Cancer.
Chinese Journal of Lung Cancer 2023;26(1):52-58
As one of the most common malignant tumors, lung cancer poses a serious threat to human life and health. The platinum-based drug cisplatin (DDP) is used as the first-line treatment for lung cancer. The poor prognosis of lung cancer is mostly due to developed resistance to cisplatin, which poses a serious treatment challenge. The mechanism of cisplatin resistance is complex and unclear. Numerous studies have shown that DNA methylation plays a crucial role in the emergence of lung cancer cisplatin resistance. DNA hypermethylation results in the deactivation of numerous drug resistance genes and tumor suppressor genes through a change in chromatin conformation. Finding new therapeutic targets and indicators to predict the therapeutic effect can be aided by elucidating the complex mechanism. In order to discover novel strategies to overcome cisplatin resistance in lung cancer, this paper discusses DNA methylation-mediated cisplatin resistance and offers an overview of current demethylation procedures.
.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Cell Line, Tumor
;
Cisplatin/therapeutic use*
;
DNA Methylation
;
Drug Resistance, Neoplasm/genetics*
;
Gene Expression Regulation, Neoplastic
;
Lung Neoplasms/pathology*
9.Evaluation of Microsphere-based xMAP Test for gyrA Mutation Identification in Mycobacterium Tuberculosis.
Xi Chao OU ; Bing ZHAO ; Ze Xuan SONG ; Shao Jun PEI ; Sheng Fen WANG ; Wen Cong HE ; Chun Fa LIU ; Dong Xin LIU ; Rui Da XING ; Hui XIA ; Yan Lin ZHAO
Biomedical and Environmental Sciences 2023;36(4):384-387
10.Genotyping Characteristics of Human Fecal Escherichia coli and Their Association with Multidrug Resistance in Miyun District, Beijing.
Wei Wei ZHANG ; Xiao Lin ZHU ; Le Le DENG ; Ya Jun HAN ; Zhuo Wei LI ; Jin Long WANG ; Yong Liang CHEN ; Ao Lin WANG ; Er Li TIAN ; Bin CHENG ; Lin Hua XU ; Yi Cong CHEN ; Li Li TIAN ; Guang Xue HE
Biomedical and Environmental Sciences 2023;36(5):406-417
OBJECTIVE:
To explore the genotyping characteristics of human fecal Escherichia coli( E. coli) and the relationships between antibiotic resistance genes (ARGs) and multidrug resistance (MDR) of E. coli in Miyun District, Beijing, an area with high incidence of infectious diarrheal cases but no related data.
METHODS:
Over a period of 3 years, 94 E. coli strains were isolated from fecal samples collected from Miyun District Hospital, a surveillance hospital of the National Pathogen Identification Network. The antibiotic susceptibility of the isolates was determined by the broth microdilution method. ARGs, multilocus sequence typing (MLST), and polymorphism trees were analyzed using whole-genome sequencing data (WGS).
RESULTS:
This study revealed that 68.09% of the isolates had MDR, prevalent and distributed in different clades, with a relatively high rate and low pathogenicity. There was no difference in MDR between the diarrheal (49/70) and healthy groups (15/24).
CONCLUSION
We developed a random forest (RF) prediction model of TEM.1 + baeR + mphA + mphB + QnrS1 + AAC.3-IId to identify MDR status, highlighting its potential for early resistance identification. The causes of MDR are likely mobile units transmitting the ARGs. In the future, we will continue to strengthen the monitoring of ARGs and MDR, and increase the number of strains to further verify the accuracy of the MDR markers.
Humans
;
Escherichia coli/genetics*
;
Escherichia coli Infections/epidemiology*
;
Multilocus Sequence Typing
;
Genotype
;
Beijing
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
Diarrhea
;
Microbial Sensitivity Tests

Result Analysis
Print
Save
E-mail