1.A Neural Circuit Controlling Virgin Female Aggression Induced by Mating-related Cues in Drosophila.
Xiaolu WAN ; Peng SHEN ; Kai SHI ; Jing LI ; Fengming WU ; Chuan ZHOU
Neuroscience Bulletin 2023;39(9):1396-1410
Females increase aggression for mating opportunities and for acquiring reproductive resources. Although the close relationship between female aggression and mating status is widely appreciated, whether and how female aggression is regulated by mating-related cues remains poorly understood. Here we report an interesting observation that Drosophila virgin females initiate high-frequency attacks toward mated females. We identify 11-cis-vaccenyl acetate (cVA), a male-derived pheromone transferred to females during mating, which promotes virgin female aggression. We subsequently reveal a cVA-responsive neural circuit consisting of four orders of neurons, including Or67d, DA1, aSP-g, and pC1 neurons, that mediate cVA-induced virgin female aggression. We also determine that aSP-g neurons release acetylcholine (ACh) to excite pC1 neurons via the nicotinic ACh receptor nAChRα7. Together, beyond revealing cVA as a mating-related inducer of virgin female aggression, our results identify a neural circuit linking the chemosensory perception of mating-related cues to aggressive behavior in Drosophila females.
Animals
;
Male
;
Female
;
Drosophila/physiology*
;
Drosophila Proteins/physiology*
;
Cues
;
Sexual Behavior, Animal/physiology*
;
Aggression/physiology*
;
Drosophila melanogaster/physiology*
2.Neural Control of Action Selection Among Innate Behaviors.
Neuroscience Bulletin 2022;38(12):1541-1558
Nervous systems must not only generate specific adaptive behaviors, such as reproduction, aggression, feeding, and sleep, but also select a single behavior for execution at any given time, depending on both internal states and external environmental conditions. Despite their tremendous biological importance, the neural mechanisms of action selection remain poorly understood. In the past decade, studies in the model animal Drosophila melanogaster have demonstrated valuable neural mechanisms underlying action selection of innate behaviors. In this review, we summarize circuit mechanisms with a particular focus on a small number of sexually dimorphic neurons in controlling action selection among sex, fight, feeding, and sleep behaviors in both sexes of flies. We also discuss potentially conserved circuit configurations and neuromodulation of action selection in both the fly and mouse models, aiming to provide insights into action selection and the sexually dimorphic prioritization of innate behaviors.
Animals
;
Mice
;
Male
;
Female
;
Drosophila melanogaster/physiology*
;
Sexual Behavior, Animal/physiology*
;
Instinct
;
Neurons/physiology*
;
Aggression/physiology*
3.Serotonin Signaling Modulates Sexual Receptivity of Virgin Female Drosophila.
Baoxu MA ; Rencong WANG ; Yaohua LIU ; Bowen DENG ; Tao WANG ; Fengming WU ; Chuan ZHOU
Neuroscience Bulletin 2022;38(11):1277-1291
The choice of females to accept or reject male courtship is a critical decision for animal reproduction. Serotonin (5-hydroxytryptamine; 5-HT) has been found to regulate sexual behavior in many species, but it is unclear how 5-HT and its receptors function to regulate different aspects of sexual behavior. Here we used Drosophila melanogaster as the model animal to investigate how 5-HT and its receptors modulate female sexual receptivity. We found that knockout of tryptophan hydroxylase (Trh), which is involved in the biosynthesis of 5-HT, severely reduced virgin female receptivity without affecting post-mating behaviors. We identified a subset of sexually dimorphic Trh neurons that co-expressed fruitless (fru), in which the activity was correlated with sexual receptivity in females. We also found that 5-HT1A and 5-HT7 receptors regulate virgin female receptivity. Our findings demonstrate how 5-HT functions in sexually dimorphic neurons to promote virgin female receptivity through two of its receptors.
Animals
;
Male
;
Female
;
Drosophila/physiology*
;
Drosophila melanogaster/physiology*
;
Serotonin
;
Drosophila Proteins/physiology*
;
Sexual Behavior, Animal/physiology*
;
Transcription Factors
;
Nerve Tissue Proteins
4.A Shared Neural Node for Multiple Innate Behaviors in Drosophila.
Neuroscience Bulletin 2018;34(6):1103-1104
Animals
;
Behavior, Animal
;
physiology
;
Drosophila melanogaster
;
physiology
;
Female
;
Instinct
;
Male
;
Nerve Net
;
physiology
;
Neurons
;
physiology
5.Preferential distribution of nuclear MAPK signal in α/β core neurons during long-term memory consolidation in Drosophila.
Wantong HU ; Xuchen ZHANG ; Lianzhang WANG ; Zhong-Jian LIU ; Yi ZHONG ; Qian LI
Protein & Cell 2017;8(10):780-783
Animals
;
Cell Nucleus
;
enzymology
;
Drosophila Proteins
;
genetics
;
metabolism
;
Drosophila melanogaster
;
Extracellular Signal-Regulated MAP Kinases
;
genetics
;
metabolism
;
Long-Term Potentiation
;
physiology
;
MAP Kinase Signaling System
;
physiology
;
Memory Consolidation
;
physiology
;
Neurons
;
cytology
;
enzymology
6.Hypnotic effects of a novel anti-insomnia formula on Drosophila insomnia model.
Chun-Hay KO ; Chi-Man KOON ; Siu-Lung YU ; Kwok-Ying LEE ; Clara Bik-San LAU ; Edwin Ho-Yin CHAN ; Yun-Kwok WING ; Kwok-Pui FUNG ; Ping-Chung LEUNG
Chinese journal of integrative medicine 2016;22(5):335-343
OBJECTIVETo assess the biological effects of the six-herb mixture Anti-Insomia Formula (AIF) extract using caffeine-induced insomnia Drosophila model and short-sleep mutants.
METHODSCaffeineinduced insomnia wild-type Drosophila and short-sleep mutant flies minisleep (mns) and Hyperkinetic(Y) (Hk(Y)) were used to assess the hypnotic effects of the AIF in vivo. The night time activity, the amount of night time sleep and the number of sleep bouts were determined using Drosophila activity monitoring system. Sleep was defined as any period of uninterrupted behavioral immobility (0 count per minute) lasting > 5 min. Night time sleep was calculated by summing up the sleep time in the dark period. Number of sleep bouts was calculated by counting the number of sleep episodes in the dark period.
RESULTSAIF at the dosage of 50 mg/mL, effectively attenuated caffeine-induced wakefulness (P<0.01) in wild-type Canton-S flies as indicated by the reduction of the sleep bouts, night time activities and increase of the amount of night time sleep. AIF also significantly reduced sleeping time of short-sleep Hk(Y) mutant flies (P<0.01). However, AIF did not produce similar effect in mns mutants.
CONCLUSIONAIF might be able to rescue the abnormal condition caused by mutated modulatory subunit of the tetrameric potassium channel, but not rescuing the abnormal nerve firing caused by Shaker gene mutation. This study provides the scientific evidence to support the use of AIF in Chinese medicine for promoting sleep quality in insomnia.
Animals ; Caffeine ; Chromatography, High Pressure Liquid ; Disease Models, Animal ; Drosophila melanogaster ; drug effects ; physiology ; Hypnotics and Sedatives ; pharmacology ; therapeutic use ; Mutation ; genetics ; Potassium Channels ; genetics ; Sleep ; drug effects ; Sleep Initiation and Maintenance Disorders ; drug therapy ; Wakefulness ; drug effects
7.A new method for quantifying mitochondrial axonal transport.
Mengmeng CHEN ; Yang LI ; Mengxue YANG ; Xiaoping CHEN ; Yemeng CHEN ; Fan YANG ; Sheng LU ; Shengyu YAO ; Timothy ZHOU ; Jianghong LIU ; Li ZHU ; Sidan DU ; Jane Y WU
Protein & Cell 2016;7(11):804-819
Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named "MitoQuant". This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.
Animals
;
Axonal Transport
;
physiology
;
Cerebral Cortex
;
cytology
;
metabolism
;
Drosophila melanogaster
;
cytology
;
metabolism
;
Embryo, Mammalian
;
Gene Expression
;
Lab-On-A-Chip Devices
;
Microscopy, Confocal
;
Mitochondria
;
metabolism
;
ultrastructure
;
Motor Neurons
;
metabolism
;
ultrastructure
;
Movement
;
Mutation
;
Primary Cell Culture
;
RNA-Binding Protein FUS
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Software
8.The carboxypeptidase D homolog silver regulates memory formation via insulin pathway in Drosophila.
Binyan LU ; Yi ZHAO ; Jie ZHAO ; Xiaoyang YAO ; Yichun SHUAI ; Weiwei MA ; Yi ZHONG
Protein & Cell 2016;7(8):606-610
Animals
;
Drosophila Proteins
;
genetics
;
metabolism
;
Drosophila melanogaster
;
Memory
;
physiology
;
Mushroom Bodies
;
cytology
;
metabolism
;
Proteins
;
genetics
;
metabolism
9.The differential requirement of mushroom body α/β subdivisions in long-term memory retrieval in Drosophila.
Cheng HUANG ; Pengzhi WANG ; Zhiyong XIE ; Lianzhang WANG ; Yi ZHONG
Protein & Cell 2013;4(7):512-519
The mushroom body (MB), a bilateral brain structure possessing about 2000-2500 neurons per hemisphere, plays a central role in olfactory learning and memory in Drosophila melanogaster. Extensive studies have demonstrated that three major types of MB neurons (α/β, α'/β' and Γ) exhibit distinct functions in memory processing, including the critical role of approximately 1000 MB α/β neurons in retrieving long-term memory. Inspired by recent findings that MB α/β neurons can be further divided into three subdivisions (surface, posterior and core) and wherein the α/β core neurons play an permissive role in long-term memory consolidation, we examined the functional differences of all the three morphological subdivisions of MB α/β by temporally precise manipulation of their synaptic outputs during long-term memory retrieval. We found the normal neurotransmission from a combination of MB α/β surface and posterior neurons is necessary for retrieving both aversive and appetitive long-term memory, whereas output from MB α/β posterior or core subdivision alone is dispensable. These results imply a specific requirement of about 500 MB α/β neurons in supporting long-term memory retrieval and a further functional partitioning for memory processing within the MB α/β region.
Adenylyl Cyclases
;
metabolism
;
Animals
;
Drosophila Proteins
;
metabolism
;
Drosophila melanogaster
;
cytology
;
metabolism
;
physiology
;
Memory, Long-Term
;
physiology
;
Mushroom Bodies
;
cytology
;
physiology
;
Neurons
;
cytology
;
metabolism
;
Synapses
;
metabolism
;
Transcription Factors
;
metabolism
10.Effect of linear alkylbenzenesulfonate on the reproductive capacity and life-span of Drosophila melanogaster.
Wenhong ZHAO ; Ding ZHANG ; Chunxian ZHOU ; Chengmei JIANG
Journal of Central South University(Medical Sciences) 2011;36(2):154-158
OBJECTIVE:
To investigate the effect of linear alkylbenzenesulfonate (LAS) on the reproductive capacity and life-span of Drosophila melanogaster.
METHODS:
Drosophila melanogaster images within 8 h after eclosion were collected with ether anesthesia. The female and male of similar size and normal shape and behavior were selected. The Drosophila melanogasters were cultured in the culture medium containing LAS of different densities. We divided the Drosophila melanogaster into 4 groups according to LAS concentrations: a low dose group with LAS 150 mg/kg, a middle dose group with LAS 300 mg/kg,a high dose group with LAS 600 mg/kg, and a control group without LAS, respectively. The changes of the reproductive capacity, median lethal time, mean life-span and max mean life-span of drosophila melanogaster with different doses of LAS were measured and compared with those of the control.
RESULTS:
The pupa numbers of filial generation of Drosophila melanogaster in the low, middle, and high dose groups (85.07%, 84.59% and 71.88%, respectively) were lower than those in the control group (P<0.01). The median lethal time, mean life-span and max mean life-span of Drosophila melanogaster in the low, middle, and high dose groups were shorter than those in the control group (P<0.05). The change of life-span of Drosophila melanogaster in the high dose group was remarkable: the median lethal time of female and male shortened 13 days and 15 days, the mean life-span of female and male shortened 18 days and 14 days, and the max mean life-span of female and male shortened 14 days and 12 days, respectively.
CONCLUSION
LAS has definite toxicity to Drosophila melanogaster, which can degrade the reproductive capacity of Drosophila melanogaster and shorten the life-span of Drosophila melanogaster.
Alkanesulfonic Acids
;
pharmacology
;
toxicity
;
Animals
;
Dose-Response Relationship, Drug
;
Drosophila melanogaster
;
physiology
;
Female
;
Life Expectancy
;
Longevity
;
Male
;
Reproduction
;
drug effects
;
Surface-Active Agents
;
pharmacology
;
toxicity

Result Analysis
Print
Save
E-mail