1.Shugan Liangxue Decoction () Down-Regulates Estrogen Receptor α Expression in Breast Cancer Cells.
Ning ZHOU ; Shu-Yan HAN ; Yan-Zhi CHEN ; Fei ZHOU ; Wen-Xian ZHENG ; Ping-Ping LI
Chinese journal of integrative medicine 2018;24(7):518-524
OBJECTIVETo observe the effect of Shugan Liangxue Decoction (, SGLXD) on estrogen receptor α (ERα) in human breast cancer cells.
METHODSThe effect of SGLXD (0.85-5.10 mg/mL) on the proliferation of breast cancer cells were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The nuclear ERα protein levels in MCF-7, T47D and ZR-75-1 cells which treated by SGLXD for 24 h were examined by western blot and immunofluorescence assay. MCF-7 and MDA-MB-231 cells were treated by 17β-estradiol (E2) with or without SGLXD, for 24 h, and the E2 targeted genes c-myc and bcl-2 protein product was evaluated by western blot.
RESULTSSGLXD showed dose-dependent inhibition on the proliferation of MCF-7, T47D and ZR-75-1 cells, but did not inhibit the proliferation of MDA-MB-231 cells. Furthermore, the promotive effect on cell growth induced by E2 was also significantly inhibited by SGLXD treatment. With the treatment of 1.70, 3.40, 5.10 mg/mL SGLXD, the nuclear ERα protein level was reduced to 88.1%, 70.4% and 60.9% in MCF-7 cells, and was decreased to 43.0%, 38.4% and 5.9% in ZR-75-1 cells as compared with the control group. In T47D cells, the nuclear ERα protein was down-regulated to 51.3% and 4.3% by 3.40 and 5.10 mg/mL SGLXD treatment. The down-regulative effect of SGLXD on nuclear ERα was confirmed by immunofluorescence assay. SGLXD decreased the protein product of c-myc and bcl-2.
CONCLUSIONSSGLXD may exhibit selective inhibition effect on the proliferation of ER positive breast cancer cells. SGLXD reduced the nuclear ERα expression and the protein product of E2 target gene c-myc and bcl-2.
Breast Neoplasms ; genetics ; pathology ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; genetics ; Dose-Response Relationship, Drug ; Down-Regulation ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Estradiol ; pharmacology ; Estrogen Receptor alpha ; genetics ; Female ; Gene Expression Regulation, Neoplastic ; drug effects ; Humans ; MCF-7 Cells
2.Identification of natural compounds targeting Annexin A2 with an anti-cancer effect.
Yu-Shi WANG ; He LI ; Yang LI ; Hongyan ZHU ; Ying-Hua JIN
Protein & Cell 2018;9(6):568-579
Annexin A2, a multifunctional tumor associated protein, promotes nuclear factor-kappa B (NF-κB) activation by interacting with NF-κB p50 subunit and facilitating its nuclear translocation. Here we demonstrated that two ginsenosides Rg5 (G-Rg5) and Rk1 (G-Rk1), with similar structure, directly bound to Annexin A2 by molecular docking and cellular thermal shift assay. Both Rg5 and Rk1 inhibited the interaction between Annexin A2 and NF-κB p50 subunit, their translocation to nuclear and NF-κB activation. Inhibition of NF-κB by these two ginsenosides decreased the expression of inhibitor of apoptosis proteins (IAPs), leading to caspase activation and apoptosis. Over expression of K302A Annexin A2, a mutant version of Annexin A2, which fails to interact with G-Rg5 and G-Rk1, effectively reduced the NF-κB inhibitory effect and apoptosis induced by G-Rg5 and G-Rk1. In addition, the knockdown of Annexin A2 largely enhanced NF-κB activation and apoptosis induced by the two molecules, indicating that the effects of G-Rg5 and G-Rk1 on NF-κB were mainly mediated by Annexin A2. Taken together, this study for the first time demonstrated that G-Rg5 and G-Rk1 inhibit tumor cell growth by targeting Annexin A2 and NF-κB pathway, and G-Rg5 and G-Rk1 might be promising natural compounds for targeted cancer therapy.
Active Transport, Cell Nucleus
;
drug effects
;
Annexin A2
;
chemistry
;
deficiency
;
genetics
;
metabolism
;
Antineoplastic Agents
;
chemistry
;
metabolism
;
pharmacology
;
Apoptosis
;
drug effects
;
Biological Products
;
chemistry
;
metabolism
;
pharmacology
;
Cell Nucleus
;
drug effects
;
metabolism
;
Down-Regulation
;
drug effects
;
Drug Discovery
;
Gene Knockdown Techniques
;
Ginsenosides
;
chemistry
;
Hep G2 Cells
;
Humans
;
Molecular Docking Simulation
;
Molecular Targeted Therapy
;
NF-kappa B p50 Subunit
;
metabolism
;
Protein Conformation
3.Mori Cortex extract ameliorates nonalcoholic fatty liver disease (NAFLD) and insulin resistance in high-fat-diet/streptozotocin-induced type 2 diabetes in rats.
Li-Li MA ; Yan-Yan YUAN ; Ming ZHAO ; Xin-Rong ZHOU ; Tashina JEHANGIR ; Fu-Yan WANG ; Yang XI ; Shi-Zhong BU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):411-417
Nonalcoholic fatty liver disease (NAFLD) and type 2 Diabetes Mellitus (T2DM) are highly prevalent diseases and are closely associated, with NAFLD being present in the majority of T2DM patients. In Asian traditional medicine, Mori Cortex is widely used for the treatment of diabetes and hyperlipidemia. However, whether it has a therapeutic effect on T2DM associated with NAFLD is still unknown. The present study showed that the oral treatment with Mori Cortex extract (MCE; 10 g·kg·d) lowered the blood lipid levels and reversed insulin resistance (IR) in high fat-diet/streptozotocin-induced type 2 diabetes in rats. The expression levels of sterol receptor element-binding protein-1c (SREBP-1c) and carbohydrate-responsive element binding protein (ChREBP), which are involved in steatosis in NAFLD rats, were measured in the liver samples. MCE decreased the protein and mRNA expression levels of SREBP-1c and ChREBP. In conclusion, down-regulation of SREBP-1c and ChREBP might contribute to the protective effect of MCE on hepatic injury and IR in the rats with T2DM associated with NAFLD.
Alanine Transaminase
;
blood
;
Animals
;
Aspartate Aminotransferases
;
blood
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
;
genetics
;
Diabetes Mellitus, Type 2
;
blood
;
chemically induced
;
drug therapy
;
metabolism
;
Diet, High-Fat
;
adverse effects
;
Disease Models, Animal
;
Down-Regulation
;
drug effects
;
Insulin
;
blood
;
Insulin Resistance
;
physiology
;
Lipid Metabolism
;
drug effects
;
genetics
;
Liver
;
drug effects
;
physiopathology
;
Male
;
Morus
;
Non-alcoholic Fatty Liver Disease
;
blood
;
chemically induced
;
drug therapy
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Streptozocin
4.Effect of down-regulation of growth arrest and DNA damage inducible protein 45β on PC9 lung adenocarcinoma cells.
Hao HU ; Kailin QUE ; Hao PENG ; Jia LIU ; Cheng HAN ; Na ZHANG ; Tao HOU ; Chunhong HU ; Jin'an MA
Journal of Central South University(Medical Sciences) 2018;43(11):1209-1215
To explore the effect of down-regulation of growth arrest and DNA damage inducible protein 45β (GADD45β) on the PC9 lung adenocarcinoma cells.
Methods: GADD45β gene siRNA sequence was designed and synthesized, which was transfected into PC9 lung adenocarcinoma cells through lentivirus transfection. Quantitative real-time PCR (qRT-PCR) and Western blot are used to examine the mRNA and protein levels of GADD45β in PC9 cells before and after the transfection. Annexin V-allophycocyanin (APC) double-staining flow cytometry was used to detect the apoptosis level after the transfection. The intracellular DNA content after transfection was detected by flow cytometry. The percentage of the cells at each period of cell cycle was calculated, and the effect of RNA interference on the cell growth were analyzed. The effects of RNA interference on the tumor-formation ability of cells were tested by counting the number of clones. MTT assay was used to test the half maximal inhibitory concentration (IC50) of PC9 cells for gefitinib.
Results: The 5'-AAATCCACTTCACGCTCAT-3' sequence was identified as the effective sequence for GADD45β gene RNA interference. The mRNA and protein expression levels of GADD45β were markedly decreased (both P<0.05) at 48 h after transfection of GADD45β-siRNA, which resulted in the increased apoptosis rate (P<0.05), decreased tumor clone number (P<0.05) and increased percentage of PC9 cell at the S stage and G2/M stage (P<0.05). The IC50 for gefitinib was decreased obviously (P<0.05).
Conclusion: Down-regulation of GADD45β can reduce the colony-forming ability of PC9 cells, promote the cell apoptosis, and enhance the sensitivity of PC9 cells to gefitinib.
Adenocarcinoma of Lung
;
Antigens, Differentiation
;
genetics
;
metabolism
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
Down-Regulation
;
Gefitinib
;
pharmacology
;
Humans
;
RNA, Small Interfering
5.BRD4 interacts with PML/RARα in acute promyelocytic leukemia.
Qun LUO ; Wanglong DENG ; Haiwei WANG ; Huiyong FAN ; Ji ZHANG
Frontiers of Medicine 2018;12(6):726-734
Bromodomain-containing 4 (BRD4) has been considered as an important requirement for disease maintenance and an attractive therapeutic target for cancer therapy. This protein can be targeted by JQ1, a selective small-molecule inhibitor. However, few studies have investigated whether BRD4 influenced acute promyelocytic leukemia (APL), and whether BRD4 had interaction with promyelocytic leukemia-retinoic acid receptor α (PML/RARα) fusion protein to some extent. Results from cell viability assay, cell cycle analysis, and Annexin-V/PI analysis indicated that JQ1 inhibited the growth of NB4 cells, an APL-derived cell line, and induced NB4 cell cycle arrest at G1 and apoptosis. Then, we used co-immunoprecipitation (co-IP) assay and immunoblot to demonstrate the endogenous interaction of BRD4 and PML/RARα in NB4 cells. Moreover, downregulation of PML/RARα at the mRNA and protein levels was observed upon JQ1 treatment. Furthermore, results from the RT-qPCR, ChIP-qPCR, and re-ChIP-qPCR assays showed that BRD4 and PML/RARα co-existed on the same regulatory regions of their target genes. Hence, we showed a new discovery of the interaction of BRD4 and PML/RARα, as well as the decline of PML/RARα expression, under JQ1 treatment.
Apoptosis
;
drug effects
;
Azepines
;
pharmacology
;
Cell Differentiation
;
Down-Regulation
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Leukemia, Promyelocytic, Acute
;
drug therapy
;
genetics
;
Nuclear Proteins
;
genetics
;
Promyelocytic Leukemia Protein
;
genetics
;
RNA, Messenger
;
genetics
;
Retinoic Acid Receptor alpha
;
genetics
;
Transcription Factors
;
genetics
;
Triazoles
;
pharmacology
;
Tumor Cells, Cultured
6.Sodium valprovate suppresses autophagy in SH-SY5Y cells activating miR-34c-5p/ATG4B signaling pathway.
Xufang DAI ; Xiaojing YAN ; Peng XIE ; Jiqin LIAN
Journal of Southern Medical University 2018;38(12):1415-1420
OBJECTIVE:
To investigate the effect of sodium valproate (VPA) on activation of miR-34c-5p/ATG4B signaling pathway and autophagy in SH-SY5Y cells.
METHODS:
Routinely cultured SH-SY5Y cells were treated with VPA at different doses for 24 h, and the changes in the mRNA levels of ATG4B and miR-34c-5p and the protein expression of ATG4B were assessed using qRTPCR and immunoblotting, respectively. The effect of transfection with a plasmid containing ATG4B promoter on the promoter activity of ATG4B in VPA-treated SH-SY5Y cells was assessed using the reporter gene assay. The stability of ATG4B mRNA was analyzed with qPCR in SH-SY5Y cells treated with VPA alone or with VPA combined with the transcription inhibitor actinomycin D. The expression level of miR-34c-5p was detected using qPCR in SH-SY5Y cells treated with VPA alone or with VPA combined with miR-34c-5p mimics or antagonist, and the role of miR-34c-5p in VPA-induced ATG4B down-regulation was evaluated. The changes in the level of autophagy were evaluated by detecting LC3-Ⅱ expression in the cells after treatment with VPA or VPA combined with miR-34c-5p antagonist.
RESULTS:
VPA dose-dependently down-regulated the expression of ATG4B at both the mRNA and protein levels in SH-SY5Y cells. VPA treatment did not significantly affect the promoter activity of ATG4B, but obviously lowered the mRNA stability of ATG4B in SH-SY5Y cells. VPA treatment up-regulated the expression of miR-34c-5p, and the miR-34c-5p antagonist reversed VPA-induced down-regulation of ATG4B in SH-SY5Y cells. VPA also down-regulated the expression level of LC3-Ⅱ in SH-SY5Y cells.
CONCLUSIONS
VPA suppresses autophagy in SH-SY5Y cells possibly via activating miR-34c-5p/ATG4B signaling pathway.
Autophagy
;
drug effects
;
Autophagy-Related Proteins
;
genetics
;
metabolism
;
Cell Line
;
Cysteine Endopeptidases
;
genetics
;
metabolism
;
Dactinomycin
;
pharmacology
;
Down-Regulation
;
Genes, Reporter
;
Humans
;
MicroRNAs
;
antagonists & inhibitors
;
metabolism
;
Microtubule-Associated Proteins
;
metabolism
;
RNA, Messenger
;
metabolism
;
Signal Transduction
;
drug effects
;
Transfection
;
Valproic Acid
;
administration & dosage
;
antagonists & inhibitors
;
pharmacology
7.MiR-145 inhibits drug resistance to Oxaliplatin in colorectal cancer cells through regulating G protein coupled receptor 98.
Qiang FU ; Jing CHENG ; Jindai ZHANG ; Yonglei ZHANG ; Xiaobing CHEN ; Jianguo XIE ; Suxia LUO
Chinese Journal of Gastrointestinal Surgery 2017;20(5):566-570
OBJECTIVETo predict and identify the target gene of miR-145, and to explore the underlying mechanism of the inhibition of miR-145 on drug resistance to Oxaliplatin (L-OHP) in human colorectal cancer cells.
METHODSL-OHP-resistant human colorectal cancer cell line (HCT116/L-OHP) was established in vitro by exposing to increased concentrations of L-OHP in cell culture medium. MiR-145-mimics and its negative control (NC-miRNA) were transfected into HCT116/L-OHP cells using liposome to establish HCT116/L-OHPover-expressing miR-145 and HCT116/L-OHP. The target genes of miR-145 were predicted by bioinformatic analysis, and validated by dual luciferase activity assay. After determination of G protein coupled receptor 98(GPR98) as target gene, corresponding plasmids were constructed and transfected to establish HCT116/L-OHPover-expressing GPR98 and HCT116/L-OHP. HCT116/L-OHP cells over-expressing both GPR98 and miR-145 (HCT116/L-OHP) were acquired through modification of the binding sites of GPR98 cDNA with miR-145. CCK-8 assay was used to assess the proliferation (A value) and sensitivity to L-OHP (the lower the IC50, the stronger the sensitivity) in HCT116/L-OHP cells. Real-time quantitative PCR was used to measure the mRNA expression of miR-145 and GPR98. Western blot was used to examine the protein expression of GPR98 and drug-resistant associated protein, such as P-glycoprotein (gp), multiple drug-resistance protein 1(MRP1), cancer-inhibition gene PTEN.
RESULTSHCT116/L-OHP cell line was successfully established with ICof (42.34±1.05) mg/L and miR-145 mRNA expression of 0.27±0.04, which was higher than (9.81±0.95) mg/L (t=39.784, P=0.000) and lower than 1.00±0.09 (t=13.021, P=0.000) in HCT116 cells. Based on HCT116/L-OHP cells, HCT116/L-OHPcells were established successfully, with relative miR-145 expression of 10.01±1.05, which was higher than 1.06±0.14 in HCT116/L-OHPand 1.00±0.16 in HCT116/L-OHP (F=161.797, P=0.000). GPR98 was identified to be the target gene of miR-145. The relative mRNA and protein expressions of GPR98 in HCT116/L-OHPcells were 8.48±0.46 and 1.71±0.09, respectively, which were higher than those in HCT116/L-OHP(mRNA: 3.65±0.40, protein: 1.21±0.10) and HCT116/L-OHP (mRNA: 3.49±0.35, protein: 1.22±0.08; all P<0.05). The A value was 1.31±0.10, and the relative protein expressions of P-gp and MRP1 were 1.53±0.18 and 1.49±0.20 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHP (A value: 0.82±0.08, relative protein expression: 1.00±0.06 and 1.21±0.13, all P<0.05). The A value was 0.89±0.08, and the relative protein expressions of P-gp and MRP were 1.02±0.24 and 1.38±0.25 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHP(A value: 0.20±0.05, relative protein expression: 0.20±0.07, 0.55±0.10, all P<0.05). The relative protein expression of PTEN in HCT116/L-OHPcells was 0.12±0.03, which was lower than 1.25±0.14 in HCT116/L-OHP cells(P<0.05). In addition, relative protein expressions of P-gp and MRP1 were 1.02±0.24 and 1.38±0.25 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHPcells (0.20±0.07 and 0.55±0.10), while PTEN expression in HCT116/L-OHPcells was lower as compared to HCT116/L-OHPcells (1.41±0.16 vs. 1.98±0.13, P<0.05).
CONCLUSIONMiR-145 inhibits drug resistance to L-OHP of HCT116 cells through suppressing the expression of target gene GPR98.
ATP Binding Cassette Transporter, Sub-Family B ; drug effects ; ATP-Binding Cassette, Sub-Family B, Member 1 ; drug effects ; Cell Line, Tumor ; drug effects ; physiology ; Colorectal Neoplasms ; physiopathology ; Down-Regulation ; drug effects ; genetics ; Drug Resistance, Neoplasm ; drug effects ; genetics ; physiology ; HCT116 Cells ; drug effects ; physiology ; Humans ; In Vitro Techniques ; MicroRNAs ; genetics ; pharmacology ; Multidrug Resistance-Associated Proteins ; drug effects ; Organoplatinum Compounds ; pharmacology ; PTEN Phosphohydrolase ; drug effects ; RNA, Messenger ; Receptors, G-Protein-Coupled ; drug effects ; genetics
8.Effect of ASCT2 gene knock-down by shRNA on biological behaviors of colorectal cancer cells.
Canfeng CAI ; Bing ZENG ; Jun ZENG ; Haiyang XIN ; Chaoming TANG
Chinese Journal of Gastrointestinal Surgery 2017;20(4):450-454
OBJECTIVETo investigate the effect of ASCT2 gene (glutamine transporter) knock-down by shRNA on biological behaviors of colorectal cancer cells.
METHODSshRNA was transfected into colorectal cancer cells Lovo and SW480 to knockdown ASCT2 mediated by Lipofectamine 2000. Reverse transcription-PCR and Western blot were used to examine the mRNA and protein expression of ASCT2. MTT and transwell assay were used to determine the proliferation and invasiveness of Lovo and SW480 cells. Radioactive-tracer was used to detect the uptake of glutamine.
RESULTSASCT2 mRNA and protein levels were significantly down-regulated by shRNA in Lovo and SW480 cells(P<0.01). MTT and transwell assays showed that ASCT2 knock-down could significantly inhibit the proliferation of Lovo and SW480 cells (A490) and decrease the number of invasive Lovo and SW480 cells from the membrane (both P<0.01). The number of membrane Lovo cells in shASCT group and control group was 46.3±5.9 and 197.7±9.1, respectively while the number of membrane SW480 cells in shASCT group and control group was 29.7±3.8 and 139.0±9.5, respectively. Radioactive-tracer showed that shASCT2 transfection could significantly reduce the uptake of glutamine, with an inhibition rate of 79.15% in Lovo and 67.22% in SW480 cells (both P<0.01).
CONCLUSIONSASCT2 plays an oncogenic role in colonic cancer, and its promotion mechanism may be associated with glutamine metabolism. ASCT2 may be a novel therapeutic target of colonic cancer.
Amino Acid Transport System ASC ; drug effects ; genetics ; physiology ; Cell Line, Tumor ; physiology ; Cell Proliferation ; genetics ; Colorectal Neoplasms ; genetics ; physiopathology ; Down-Regulation ; drug effects ; Gene Knockdown Techniques ; methods ; Glutamine ; drug effects ; genetics ; physiology ; Humans ; Minor Histocompatibility Antigens ; drug effects ; genetics ; physiology ; Neoplasm Invasiveness ; genetics ; physiopathology ; Oncogenes ; drug effects ; genetics ; RNA, Messenger ; physiology ; RNA, Small Interfering ; pharmacology ; Transfection
9.Maternal Lead Exposure Induces Down-regulation of Hippocampal Insulin-degrading Enzyme and Nerve Growth Factor Expression in Mouse Pups.
Xing LI ; Ning LI ; Hua Lei SUN ; Jun YIN ; Yu Chang TAO ; Zhen Xing MAO ; Zeng Li YU ; Wen Jie LI ; John D BOGDEN
Biomedical and Environmental Sciences 2017;30(3):215-219
Lead exposure is a known potential risk factor for neurodegenerative diseases such as Alzheimer's disease (AD). Exposure to lead during the critical phase of brain development has been linked with mental retardation and hypophrenia in later life. This study was aimed to investigate the effects of lead exposure of pregnant mice on the expressions of insulin-degrading enzyme (IDE) and nerve growth factor (NGF) in the hippocampus of their offspring. Blood samples were collected from the tail vein, and after anesthetizing the pups, the brain was excised on postnatal day 21. Lead concentrations were determined by graphite furnace atomic absorption spectrophotometry, and the expressions of IDE and NGF were determined by immunohistochemistry and Western blotting. Results showed that the reduction in IDE and NGF expression in the hippocampus of pups might be associated with impairment of learning and memory and dementia induced by maternal lead exposure during pregnancy and lactation.
Animals
;
Down-Regulation
;
Female
;
Gene Expression Regulation, Developmental
;
drug effects
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Hippocampus
;
drug effects
;
growth & development
;
metabolism
;
Insulysin
;
genetics
;
metabolism
;
Lead
;
toxicity
;
Mice
;
Pregnancy
;
Prenatal Exposure Delayed Effects
;
chemically induced
10.Nr2e1 Downregulation Is Involved in Excess Retinoic Acid-induced Developmental Abnormality in the Mouse Brain.
Juan YU ; Qian GUO ; Jian Bing MU ; Ting ZHANG ; Ren Ke LI ; Jun XIE
Biomedical and Environmental Sciences 2017;30(3):185-193
OBJECTIVEThis study aimed to investigate the expression pattern and function of Nuclear receptor subfamily 2 group E member 1 (Nr2e1) in retinoic acid (RA)-induced brain abnormality.
METHODSThe mouse model of brain abnormality was established by administering 28 mg/kg RA, and neural stem cells (NSCs) were isolated from the mouse embryo and cultured in vitro. Nr2e1 expression was detected by whole mount in situ hybridization, RT-PCR, and Western blotting. Nr2e1 function was determined by transducing Nr2e1 shRNA into NSCs, and the effect on the sonic hedgehog (Shh) signaling pathway was assessed in the cells. In addition, the regulation of Nr2e1 expression by RA was also determined in vitro.
RESULTSNr2e1 expression was significantly downregulated in the brain and NSCs of RA-treated mouse embryos, and knockdown of Nr2e1 affected the proliferation of NSCs in vitro. In addition, a similar expression pattern of Nr2e1 and RA receptor (RAR) α was observed after treatment of NSCs with different concentrations of RA.
CONCLUSIONOur study demonstrated that Nr2e1 could be regulated by RA, which would aid a better understanding of the mechanism underlying RA-induced brain abnormality.
Animals ; Brain ; cytology ; embryology ; Cell Proliferation ; Down-Regulation ; Gene Expression Regulation ; Gene Expression Regulation, Developmental ; drug effects ; Mice ; Mice, Inbred C57BL ; Neural Stem Cells ; drug effects ; physiology ; Receptors, Cytoplasmic and Nuclear ; genetics ; metabolism ; Tretinoin ; pharmacology

Result Analysis
Print
Save
E-mail