1.Investigation on pharmacognosic identification of two Yi Medicine in Yunnan province
LIN Chunyan ; FU Xingqing ; REN Jie ; DONG Yuan ; ZHANG Wenjie
Drug Standards of China 2024;25(1):010-017
Objective: To understand their appearance and microscopic characteristics, as well as their differences by studying the pharmacognosy of Yi medicine Elsholtzia rugulosa and Elsholtzia bodinieri, in order to provide a basis for identification and improvement of quality standards.
Methods: Stereo microscopy and optical microscopy and the macroscopic and microscopic identification methods were adopted to compare identification and digital representation for Elsholtzia rugulosa and Elsholtzia bodinieri from overall character, local characteristics, the microscopic identification characteristics, the transverse section and the powder.
Results:There were significant differences in the the macroscopic and the microscopic identification characteristics of Elsholtzia rugulosa and Elsholtzia bodinieri.
Conclusion: This study summarized the exclusive and practical features in pharmacognosic identification of Elsholtzia rugulosa and Elsholtzia bodinieri, it provides a useful reference for supervision the clinical medication,inspection,and standard drafting.
2.Radix Angelica Sinensis and Radix Astragalus ultrafiltration extract improves radiation-induced pulmonary fibrosis in rats by regulating NLRP3/caspase-1/GSDMD pyroptosis pathway
Chun-Zhen REN ; Jian-Fang YUAN ; Chun-Ling WANG ; Xiao-Dong ZHI ; Qi-Li ZHANG ; Qi-Lin CHEN ; Xin-Fang LYU ; Xiang GAO ; Xue WU ; Xin-Ke ZHAO ; Ying-Dong LI
Chinese Pharmacological Bulletin 2024;40(11):2124-2131
Aim To investigate the mechanism of py-roptosis mediated by the NLRP3/caspase-1/GSDMD signaling pathway and the intervention effect of Radix Angelica Sinensis and Radix Astragalus ultrafiltration extract(RAS-RA)in radiation-induced pulmonary fi-brosis.Methods Fifty Wistar rats were randomly di-vided into five groups,with ten rats in each group.Ex-cept for the blank control group,all other groups of rats were anesthetized and received a single dose of 40 Gy X-ray local chest radiation to establish a radiation-in-duced pulmonary fibrosis rat model.After radiation,the rats in the RAS-RA intervention groups were orally administered doses of 0.12,0.24 and 0.48 g·kg-1 once a day for 30 days.The average weight and lung index of the rats were observed after 30 days of contin-uous administration.Hydroxyproline(HYP)content in lung tissue was determined by hydrolysis method.The levels of IL-18 and IL-1 β in serum were detected by ELISA.Lung tissue pathological changes were ob-served by HE and Masson staining.Ultrastructural changes in lung tissue were observed by transmission e-lectron microscopy.The expression levels of NLRP3/caspase-1/GSDMD pyroptosis pathway-related proteins and fibrosis-related proteins in lung tissue were detec-ted by Western blot.Results Compared with the blank group,the HYP content in lung tissue and the levels of IL-18 and IL-1 β in serum significantly in-creased in the model group(P<0.01).HE and Mas-son staining showed inflammatory cell infiltration and collagen fiber deposition.Transmission electron mi-croscopy revealed increased damaged mitochondria,disordered arrangement,irregular morphology,shallow matrix,outer membrane rupture,mostly fractured and shortened cristae,mild expansion,increased electron density of individual mitochondrial matrix,mild sparse structure of lamellar bodies,partial disorder,unclear organelles,and characteristic changes of pyroptosis.Western blot analysis showed increased expression of caspase-1,GSDMD,NLRP3,CoL-Ⅰ,α-SMA,and CoL-Ⅲ proteins(P<0.01).Compared with the model group,the RAS-RA intervention group showed signifi-cant improvement in body mass index and lung index of rats,decreased levels of IL-18 and IL-1 β inflammatory factors(P<0.01),improved mitochondrial structure,reduced degree of fibrosis,and decreased expression of caspase-1,GSDMD,NLRP3,COL-Ⅰ,COL-Ⅲ,and α-SMA proteins in lung tissue(P<0.01).Conclusion RAS-RA has an inhibitory effect on radiation-in-duced pulmonary fibrosis,and its mechanism may be related to the inhibition of pyroptosis through the regu-lation of the NLRP3/caspase-1/GSDMD signaling pathway.
3.Pharmacognostic identification and digitization for three medicinal fruits from the Tibetan medicine
Xingqing FU ; Chunyan LIN ; Jie REN ; Yuan DONG ; Wenjie ZHANG
Drug Standards of China 2024;25(4):358-365
Objective:To explore the Pharmacognostic identification for the famous three medicinal fruits—Chebu-lae Fructus,Terminaliae Belliricae Fructus and Phyllanthi Fructus from the Tibetan medicine,and to establish the standards of the macroscopic,microscopic identification and digital characterization for the authentication study of three medicinal fruits from the Tibetan medicine.Methods:Using the terms and research methods of botanical morphological identification and classification,the comparative identification and digital characterization of three medicinal fruits from the Tibetan medicine were carried out by optical microscope,stereo microscope,digital cam-era and digital imaging technology from the aspects of front,side,abdomen,basic,surface appearance,cross sec-tion and longitudinal section characteristics,as well as the microscopic characteristics of cross section and powder.Then,the related characteristics were compared.Results:The macroscopic identification characters,such as the appearance,and microscopic identification characters,such as the epidermal cells,fiber,stone cells,calcium ox-alate cluster crystals,of three medicinal fruits from the Tibetan medicine were clarified,and the identification methods were summarized,in order to provide reference for the identification of three medicinal fruits from the Ti-betan medicine.Conclusion:The identification method is simple,environmental friendly,accurate and reliable,and can be used for the identification basis of four medicinal fruits from three medicinal fruits from the Tibetan medicine.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
6.Enhanced recovery after surgery in transurethral surgery for benign prostatic hyperplasia.
Jing ZHOU ; Zhu-Feng PENG ; Pan SONG ; Lu-Chen YANG ; Zheng-Huan LIU ; Shuai-Ke SHI ; Lin-Chun WANG ; Jun-Hao CHEN ; Liang-Ren LIU ; Qiang DONG
Asian Journal of Andrology 2023;25(3):356-360
Enhanced recovery after surgery (ERAS) measures have not been systematically applied in transurethral surgery for benign prostatic hyperplasia (BPH). This study was performed on patients with BPH who required surgical intervention. From July 2019 to June 2020, the ERAS program was applied to 248 patients, and the conventional program was applied to 238 patients. After 1 year of follow-up, the differences between the ERAS group and the conventional group were evaluated. The ERAS group had a shorter time of urinary catheterization compared with the conventional group (mean ± standard deviation [s.d.]: 1.0 ± 0.4 days vs 2.7 ± 0.8 days, P < 0.01), and the pain (mean ± s.d.) was significantly reduced through postoperative hospitalization days (PODs) 0-2 (POD 0: 1.7 ± 0.8 vs 2.4 ± 1.0, P < 0.01; POD 1: 1.6 ± 0.9 vs 3.5 ± 1.3, P < 0.01; POD 2: 1.2 ± 0.7 vs 3.0 ± 1.3, P < 0.01). No statistically significant difference was found in the rate of postoperative complications, such as postoperative bleeding (P = 0.79), urinary retention (P = 0.40), fever (P = 0.55), and readmission (P = 0.71). The hospitalization cost of the ERAS group was similar to that of the conventional group (mean ± s.d.: 16 927.8 ± 5808.1 Chinese Yuan [CNY] vs 17 044.1 ± 5830.7 CNY, P =0.85). The International Prostate Symptom Scores (IPSS) and quality of life (QoL) scores in the two groups were also similar when compared at 1 month, 3 months, 6 months, and 12 months after discharge. The ERAS program we conducted was safe, repeatable, and efficient. In conclusion, patients undergoing the ERAS program experienced less postoperative stress than those undergoing the conventional program.
Male
;
Humans
;
Prostatic Hyperplasia/complications*
;
Quality of Life
;
Transurethral Resection of Prostate/adverse effects*
;
Treatment Outcome
;
Enhanced Recovery After Surgery
7.Effect of Eltrombopag on Response to Immunosuppressive Therapy in Patients with Transfusion-Dependent Non-Severe Aplastic Anemia.
Ying LIN ; Rong-Dong ZHANG ; Zeng-Hua LIN ; Qi CHEN ; Ren-Li CHEN
Journal of Experimental Hematology 2023;31(3):823-829
OBJECTIVE:
To compare the efficacy of eltrombopag combined with cyclosporine A (CsA) and CsA alone in patients with transfusion-dependent non-severe aplastic anemia (TD-NSAA).
METHODS:
The clinical data of 76 patients with treatment-naive TD-NSAA in Ningde Municipal Hospital of Ningde Normal University and Affiliated Hospital of Nantong University from December 2017 to June 2021 were retrospectively analyzed. Among them, 45 cases were treated with eltrombopag combined with CsA, and 31 patients with compatible baseline characters were treated with CsA alone. The efficacy of patients between the two groups was compared, and the factors affecting the curative effects were also analyzed.
RESULTS:
There were significant differences in hematological response (HR) and complete response(CR) rates between the two groups at 3, 6, 12 months, and follow-up endpoint of treatment (P<0.05). With the prolongation of eltrombopag treatment time, the curative effect increased gradually, and the patients achieved more CR and HR rates by the end of the follow-up period. Simultaneously, with the increase in the maximum stable dose of eltrombopag, the HR rate increased gradually. The megakaryocyte count in eltrombopag group was higher than that in control at 6 and 12 months (P<0.05). Compared with the control group, the median time of platelet transfusion independence in eltrombopag group was more shorter (P=0.018), and the median platelets transfusion volume was lower (P=0.009). At 3, 6, 12 months after eltrombopag, the change of platelet in eltrombopag group was higher than that in the control group (P<0.05). Analysis of related factors affecting the efficacy showed that sex, age, iron overload, platelet count before treatment had no effect on the efficacy, and the median maximum stable dosage and the administration period for eltrombopag were related to the curative effect. The patients of eltrombopag group experienced adverse events of varying degrees, but the reactions were mild and mostly tolerated.
CONCLUSION
Eltrombopag can effectively improve the hematopoietic response and promote platelet recovery for TD-NSAA patients with relatively more residual hematopoietic cells, and it is safe and well tolerated.
Humans
;
Anemia, Aplastic/therapy*
;
Retrospective Studies
;
Treatment Outcome
;
Cyclosporine/therapeutic use*
;
Immunosuppression Therapy
;
Immunosuppressive Agents/therapeutic use*
8.Anti-inflammatory Therapy Progress in Major Adverse Cardiac Events after PCI: Chinese and Western Medicine.
Xue-Yu REN ; Ying-Fei LI ; Hui-Qing LIU ; Hui LIN ; Qian LIN ; Yang WU ; Jie WAN ; Jin-Jin LU ; Jing LIU ; Xiao-Yun CUI
Chinese journal of integrative medicine 2023;29(7):655-664
Acute coronary syndrome (ACS) is one of the leading causes of death in cardiovascular disease. Percutaneous coronary intervention (PCI) is an important method for the treatment of coronary heart disease (CHD), and it has greatly reduced the mortality of ACS patients since its application. However, a series of new problems may occur after PCI, such as in-stent restenosis, no-reflow phenomenon, in-stent neoatherosclerosis, late stent thrombosis, myocardial ischemia-reperfusion injury, and malignant ventricular arrhythmias, which result in the occurrence of major adverse cardiac events (MACE) that seriously reduce the postoperative benefit for patients. The inflammatory response is a key mechanism of MACE after PCI. Therefore, examining effective anti-inflammatory therapies after PCI in patients with ACS is a current research focus to reduce the incidence of MACE. The pharmacological mechanism and clinical efficacy of routine Western medicine treatment for the anti-inflammatory treatment of CHD have been verified. Many Chinese medicine (CM) preparations have been widely used in the treatment of CHD. Basic and clinical studies showed that effectiveness of the combination of CM and Western medicine treatments in reducing incidence of MACE after PCI was better than Western medicine treatment alone. The current paper reviewed the potential mechanism of the inflammatory response and occurrence of MACE after PCI in patients with ACS and the research progress of combined Chinese and Western medicine treatments in reducing incidence of MACE. The results provide a theoretical basis for further research and clinical treatment.
Humans
;
Percutaneous Coronary Intervention/methods*
;
Acute Coronary Syndrome/drug therapy*
;
Coronary Disease
;
Treatment Outcome
;
Stents/adverse effects*
9.Associations of genetic variations in pyroptosis related genes with acute adverse events in postoperative rectal cancer patients receiving concurrent chemoradiotherapy.
Hong Xia CHEN ; Ning Xin REN ; Jie YANG ; Jin Na CHEN ; Qi Xuan LU ; Yan Ru FENG ; Ying HUANG ; Lu Qian YIN ; Dong Xi LIN ; Ye Xiong LI ; Jing JIN ; Wen TAN
Chinese Journal of Oncology 2023;45(2):146-152
Objective: This study aims to investigate the associations between genetic variations of pyroptosis pathway related key genes and adverse events (AEs) of postoperative chemoradiotherapy (CRT) in patients with rectal cancer. Methods: DNA was extracted from the peripheral blood which was collected from 347 patients before CRT. Sequenom MassARRAY was used to detect the genotypes of 43 haplotype-tagging single nucleotide polymorphisms (htSNPs) in eight pyroptosis genes, including absent in melanoma 2 (AIM2), caspase-1 (CASP1), caspase-4(CASP4), caspase-5 (CASP5), caspase-11 (CASP11), gasdermin D (GSDMD), gasdermin E (GSDME) and NLR family pyrin domain containing 3 (NLRP3). The associations between 43 htSNPs and AEs were evaluated by the odd ratios (ORs) and 95% confidence intervals (CIs) by unconditional logistic regression models, adjusted for sex, age, clinical stage, tumor grade, Karnofsky performance status (KPS), surgical procedure, and tumor location. Results: Among the 347 patients with rectal cancer underwent concurrent CRT with capecitabine after surgery, a total of 101(29.1%) occurred grade ≥ 2 leukopenia. rs11226565 (OR=0.41, 95% CI: 0.21-0.79, P=0.008), rs579408(OR=1.54, 95% CI: 1.03-2.29, P=0.034) and rs543923 (OR=0.63, 95% CI: 0.41-0.98, P=0.040) were significantly associated with the occurrence of grade ≥ 2 leukopenia. One hundred and fifty-six (45.0%) had grade ≥ 2 diarrhea, two SNPs were significantly associated with the occurrence of grade ≥ diarrhea, including CASP11 rs10880868 (OR=0.55, 95% CI: 0.33-0.91, P=0.020) and GSDME rs2954558 (OR=1.52, 95% CI: 1.01-2.31, P=0.050). In addition, sixty-six cases (19.0%) developed grade ≥2 dermatitis, three SNPs that significantly associated with the risk of grade ≥2 dermatitis included GSDME rs2237314 (OR=0.36, 95% CI: 0.16-0.83, P=0.017), GSDME rs12540919 (OR=0.52, 95% CI: 0.27-0.99, P=0.045) and NLRP3 rs3806268 (OR=1.51, 95% CI: 1.03-2.22, P=0.037). There was no significant difference in the association between other genetic variations and AEs of rectal cancer patients (all P>0.05). Surgical procedure and tumor location had great impacts on the occurrence of grade ≥2 diarrhea and dermatitis (all P<0.01). Conclusion: The genetic variants of CASP4, CASP11, GSDME and NLRP3 are associated with the occurrence of AEs in patients with rectal cancer who received postoperative CRT, suggesting they may be potential genetic markers in predicting the grade of AEs to achieve individualized treatment of rectal cancer.
Humans
;
Pyroptosis
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Gasdermins
;
Chemoradiotherapy/adverse effects*
;
Rectal Neoplasms/surgery*
;
Caspases/metabolism*
;
Diarrhea/chemically induced*
;
Leukopenia/genetics*
;
Genetic Variation
;
Dermatitis
10.Proteomic Analysis Revealed the Involvement of Autophagy in Rat Acute Lung Injuries Caused by Gas Explosion Based on a Data-Independent Acquisition Strategy.
Shan HONG ; Chun Jie DING ; Qiang ZHOU ; Yun Zhe SUN ; Miao ZHANG ; Ning LI ; Xin Wen DONG ; Yi GUAN ; Lin ZHANG ; Lin Qiang TIAN ; Jia CAO ; Wu YAO ; Wen Jie REN ; San Qiao YAO
Biomedical and Environmental Sciences 2023;36(2):206-212
Animals
;
Rats
;
Explosions
;
Proteomics
;
Autophagy

Result Analysis
Print
Save
E-mail