1.Clinical practice guidelines for cervical cancer: an update of the Korean Society of Gynecologic Oncology Guidelines
Ji Geun YOO ; Sung Jong LEE ; Eun Ji NAM ; Jae Hong NO ; Jeong Yeol PARK ; Jae Yun SONG ; So-Jin SHIN ; Bo Seong YUN ; Sung Taek PARK ; San-Hui LEE ; Dong Hoon SUH ; Yong Beom KIM ; Keun Ho LEE
Journal of Gynecologic Oncology 2025;36(1):e70-
We describe the updated Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of cervical cancer, version 5.1. The KSGO announced the fifth version of its clinical practice guidelines for the management of cervical cancer in March 2024. The selection of the key questions and the systematic reviews were based on data available up to December 2022. Between 2023 and 2024, substantial findings from large-scale clinical trials and new advancements in cervical cancer research remarkably emerged. Therefore, based on the existing version 5.0, we updated the guidelines with newly accumulated clinical data and added 4 new key questions reflecting the latest insights in the field of cervical cancer. For each question, recommendation was formulated with corresponding level of evidence and grade of recommendation, all established through expert consensus.
2.Clinical practice guidelines for cervical cancer: an update of the Korean Society of Gynecologic Oncology Guidelines
Ji Geun YOO ; Sung Jong LEE ; Eun Ji NAM ; Jae Hong NO ; Jeong Yeol PARK ; Jae Yun SONG ; So-Jin SHIN ; Bo Seong YUN ; Sung Taek PARK ; San-Hui LEE ; Dong Hoon SUH ; Yong Beom KIM ; Keun Ho LEE
Journal of Gynecologic Oncology 2025;36(1):e70-
We describe the updated Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of cervical cancer, version 5.1. The KSGO announced the fifth version of its clinical practice guidelines for the management of cervical cancer in March 2024. The selection of the key questions and the systematic reviews were based on data available up to December 2022. Between 2023 and 2024, substantial findings from large-scale clinical trials and new advancements in cervical cancer research remarkably emerged. Therefore, based on the existing version 5.0, we updated the guidelines with newly accumulated clinical data and added 4 new key questions reflecting the latest insights in the field of cervical cancer. For each question, recommendation was formulated with corresponding level of evidence and grade of recommendation, all established through expert consensus.
3.Clinical practice guidelines for cervical cancer: an update of the Korean Society of Gynecologic Oncology Guidelines
Ji Geun YOO ; Sung Jong LEE ; Eun Ji NAM ; Jae Hong NO ; Jeong Yeol PARK ; Jae Yun SONG ; So-Jin SHIN ; Bo Seong YUN ; Sung Taek PARK ; San-Hui LEE ; Dong Hoon SUH ; Yong Beom KIM ; Keun Ho LEE
Journal of Gynecologic Oncology 2025;36(1):e70-
We describe the updated Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of cervical cancer, version 5.1. The KSGO announced the fifth version of its clinical practice guidelines for the management of cervical cancer in March 2024. The selection of the key questions and the systematic reviews were based on data available up to December 2022. Between 2023 and 2024, substantial findings from large-scale clinical trials and new advancements in cervical cancer research remarkably emerged. Therefore, based on the existing version 5.0, we updated the guidelines with newly accumulated clinical data and added 4 new key questions reflecting the latest insights in the field of cervical cancer. For each question, recommendation was formulated with corresponding level of evidence and grade of recommendation, all established through expert consensus.
4.The cumulative survival rate of dental implants with micro-threads:a long-term retrospective study
Dong-Hui NAM ; Pil-Jong KIM ; Ki-Tae KOO ; Yang-Jo SEOL ; Yong-Moo LEE ; Young KU ; In-Chul RHYU ; Sungtae KIM ; Young-Dan CHO
Journal of Periodontal & Implant Science 2024;54(1):53-62
Purpose:
This study aimed to evaluate the long-term cumulative survival rate (CSR) of dental implants with micro-threads in the neck over a 10-year follow-up period and to examine the factors influencing the survival rate of dental implants.
Methods:
This retrospective study was based on radiographic and dental records. In total, 151 patients received 490 Oneplant ® dental implants with an implant neck micro-thread design during 2006–2010 in the Department of Periodontology of Seoul National University Dental Hospital. Implant survival was evaluated using Kaplan–Meier analysis. Cox proportional hazard regression analysis was used to identify the factors influencing implant failure.
Results:
Ten out of 490 implants (2.04%) failed due to fixture fracture. The CSR of the implants was 97.9%, and no significant difference was observed in the CSR between externaland internal-implant types (98.2% and 97.6%, respectively,P=0.670). In Cox regression analysis, 2-stage surgery significantly increased the risk of implant failure (hazard ratio: 4.769, P=0.039). There were no significant differences in influencing factors, including sex, age, implant diameter, length, fixture type, location, surgical procedure, bone grafting, and restoration type.
Conclusions
Within the limitations of this retrospective study, the micro-thread design of the implant neck was found to be favorable for implant survival, with stable clinical outcomes.
5.Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia
Hojin KIM ; Sangjoon PARK ; Jihun KIM ; Jin Sung KIM ; Dong Wook KIM ; Nalee KIM ; Jae-Sun UHM ; Daehoon KIM ; Hui-Nam PAK ; Chae-Seon HONG ; Hong In YOON
Radiation Oncology Journal 2024;42(4):319-329
Purpose:
Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance.
Materials and Methods:
The study developed a consistent institutional workflow for VT-SABR, including computed tomography (CT) simulation, target volume definition, treatment planning, robust plan evaluation, quality assurance, and image-guided strategy. The workflow was implemented for two patients with cardiac arrhythmia. Accurate target volume definition using planning CT images and electronic anatomical mapping was critical. A four-dimensional (4D) cone-beam CT (CBCT) and breath-hold electrocardiographic gated CT images reliably detected target motion.
Results:
The resulting plans exhibited a conformity index greater than 0.7 and a gradient index around G4.0. Dose constraints for the planning target volume (PTV) aimed for 95% or higher PTV dose coverage, with a maximum dose of 200% or lower. However, one case did not meet the PTV dose coverage due to the proximity of the PTV to gastrointestinal organs. Plans adhered to dose constraints for organs at risk near the heart, but meeting constraints for specific cardiac sub-structures was challenging and dependent on PTV location.
Conclusion
The plans demonstrated robustness against respiratory motion and patient positional uncertainty through a robust evaluation function. The 4D and intra-fractional CBCT were effective in verifying target motion and setup stability.
6.Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia
Hojin KIM ; Sangjoon PARK ; Jihun KIM ; Jin Sung KIM ; Dong Wook KIM ; Nalee KIM ; Jae-Sun UHM ; Daehoon KIM ; Hui-Nam PAK ; Chae-Seon HONG ; Hong In YOON
Radiation Oncology Journal 2024;42(4):319-329
Purpose:
Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance.
Materials and Methods:
The study developed a consistent institutional workflow for VT-SABR, including computed tomography (CT) simulation, target volume definition, treatment planning, robust plan evaluation, quality assurance, and image-guided strategy. The workflow was implemented for two patients with cardiac arrhythmia. Accurate target volume definition using planning CT images and electronic anatomical mapping was critical. A four-dimensional (4D) cone-beam CT (CBCT) and breath-hold electrocardiographic gated CT images reliably detected target motion.
Results:
The resulting plans exhibited a conformity index greater than 0.7 and a gradient index around G4.0. Dose constraints for the planning target volume (PTV) aimed for 95% or higher PTV dose coverage, with a maximum dose of 200% or lower. However, one case did not meet the PTV dose coverage due to the proximity of the PTV to gastrointestinal organs. Plans adhered to dose constraints for organs at risk near the heart, but meeting constraints for specific cardiac sub-structures was challenging and dependent on PTV location.
Conclusion
The plans demonstrated robustness against respiratory motion and patient positional uncertainty through a robust evaluation function. The 4D and intra-fractional CBCT were effective in verifying target motion and setup stability.
7.Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia
Hojin KIM ; Sangjoon PARK ; Jihun KIM ; Jin Sung KIM ; Dong Wook KIM ; Nalee KIM ; Jae-Sun UHM ; Daehoon KIM ; Hui-Nam PAK ; Chae-Seon HONG ; Hong In YOON
Radiation Oncology Journal 2024;42(4):319-329
Purpose:
Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance.
Materials and Methods:
The study developed a consistent institutional workflow for VT-SABR, including computed tomography (CT) simulation, target volume definition, treatment planning, robust plan evaluation, quality assurance, and image-guided strategy. The workflow was implemented for two patients with cardiac arrhythmia. Accurate target volume definition using planning CT images and electronic anatomical mapping was critical. A four-dimensional (4D) cone-beam CT (CBCT) and breath-hold electrocardiographic gated CT images reliably detected target motion.
Results:
The resulting plans exhibited a conformity index greater than 0.7 and a gradient index around G4.0. Dose constraints for the planning target volume (PTV) aimed for 95% or higher PTV dose coverage, with a maximum dose of 200% or lower. However, one case did not meet the PTV dose coverage due to the proximity of the PTV to gastrointestinal organs. Plans adhered to dose constraints for organs at risk near the heart, but meeting constraints for specific cardiac sub-structures was challenging and dependent on PTV location.
Conclusion
The plans demonstrated robustness against respiratory motion and patient positional uncertainty through a robust evaluation function. The 4D and intra-fractional CBCT were effective in verifying target motion and setup stability.
8.Clinical practice guidelines for cervical cancer: the Korean Society of Gynecologic Oncology guidelines
Ji Geun YOO ; Sung Jong LEE ; Eun Ji NAM ; Jae Hong NO ; Jeong Yeol PARK ; Jae Yun SONG ; So-Jin SHIN ; Bo Seong YUN ; Sung Taek PARK ; San-Hui LEE ; Dong Hoon SUH ; Yong Beom KIM ; Taek Sang LEE ; Jae Man BAE ; Keun Ho LEE
Journal of Gynecologic Oncology 2024;35(2):e44-
This fifth revised version of the Korean Society of Gynecologic Oncology practice guidelines for the management of cervical cancer incorporates recent research findings and changes in treatment strategies based on version 4.0 released in 2020. Each key question was developed by focusing on recent notable insights and crucial contemporary issues in the field of cervical cancer. These questions were evaluated for their significance and impact on the current treatment and were finalized through voting by the development committee. The selected key questions were as follows: the efficacy and safety of immune checkpoint inhibitors as firstor second-line treatment for recurrent or metastatic cervical cancer; the oncologic safety of minimally invasive radical hysterectomy in early stage cervical cancer; the efficacy and safety of adjuvant systemic treatment after concurrent chemoradiotherapy in locally advanced cervical cancer; and the oncologic safety of sentinel lymph node mapping compared to pelvic lymph node dissection. The recommendations, directions, and strengths of this guideline were based on systematic reviews and meta-analyses, and were finally confirmed through public hearings and external reviews. In this study, we describe the revised practice guidelines for the management of cervical cancer.
9.Clinical practice guidelines for cervical cancer: the Korean Society of Gynecologic Oncology guidelines
Ji Geun YOO ; Sung Jong LEE ; Eun Ji NAM ; Jae Hong NO ; Jeong Yeol PARK ; Jae Yun SONG ; So-Jin SHIN ; Bo Seong YUN ; Sung Taek PARK ; San-Hui LEE ; Dong Hoon SUH ; Yong Beom KIM ; Taek Sang LEE ; Jae Man BAE ; Keun Ho LEE
Journal of Gynecologic Oncology 2024;35(2):e44-
This fifth revised version of the Korean Society of Gynecologic Oncology practice guidelines for the management of cervical cancer incorporates recent research findings and changes in treatment strategies based on version 4.0 released in 2020. Each key question was developed by focusing on recent notable insights and crucial contemporary issues in the field of cervical cancer. These questions were evaluated for their significance and impact on the current treatment and were finalized through voting by the development committee. The selected key questions were as follows: the efficacy and safety of immune checkpoint inhibitors as firstor second-line treatment for recurrent or metastatic cervical cancer; the oncologic safety of minimally invasive radical hysterectomy in early stage cervical cancer; the efficacy and safety of adjuvant systemic treatment after concurrent chemoradiotherapy in locally advanced cervical cancer; and the oncologic safety of sentinel lymph node mapping compared to pelvic lymph node dissection. The recommendations, directions, and strengths of this guideline were based on systematic reviews and meta-analyses, and were finally confirmed through public hearings and external reviews. In this study, we describe the revised practice guidelines for the management of cervical cancer.
10.Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia
Hojin KIM ; Sangjoon PARK ; Jihun KIM ; Jin Sung KIM ; Dong Wook KIM ; Nalee KIM ; Jae-Sun UHM ; Daehoon KIM ; Hui-Nam PAK ; Chae-Seon HONG ; Hong In YOON
Radiation Oncology Journal 2024;42(4):319-329
Purpose:
Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance.
Materials and Methods:
The study developed a consistent institutional workflow for VT-SABR, including computed tomography (CT) simulation, target volume definition, treatment planning, robust plan evaluation, quality assurance, and image-guided strategy. The workflow was implemented for two patients with cardiac arrhythmia. Accurate target volume definition using planning CT images and electronic anatomical mapping was critical. A four-dimensional (4D) cone-beam CT (CBCT) and breath-hold electrocardiographic gated CT images reliably detected target motion.
Results:
The resulting plans exhibited a conformity index greater than 0.7 and a gradient index around G4.0. Dose constraints for the planning target volume (PTV) aimed for 95% or higher PTV dose coverage, with a maximum dose of 200% or lower. However, one case did not meet the PTV dose coverage due to the proximity of the PTV to gastrointestinal organs. Plans adhered to dose constraints for organs at risk near the heart, but meeting constraints for specific cardiac sub-structures was challenging and dependent on PTV location.
Conclusion
The plans demonstrated robustness against respiratory motion and patient positional uncertainty through a robust evaluation function. The 4D and intra-fractional CBCT were effective in verifying target motion and setup stability.

Result Analysis
Print
Save
E-mail