1.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
2.Clinical trial of brexpiprazole in the treatment of adults with acute schizophrenia
Shu-Zhe ZHOU ; Liang LI ; Dong YANG ; Jin-Guo ZHAI ; Tao JIANG ; Yu-Zhong SHI ; Bin WU ; Xiang-Ping WU ; Ke-Qing LI ; Tie-Bang LIU ; Jie LI ; Shi-You TANG ; Li-Li WANG ; Xue-Yi WANG ; Yun-Long TAN ; Qi LIU ; Uki MOTOMICHI ; Ming-Ji XIAN ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(5):654-658
Objective To evaluate the efficacy and safety of brexpiprazole in treating acute schizophrenia.Methods Patients with schizophrenia were randomly divided into treatment group and control group.The treatment group was given brexpiprozole 2-4 mg·d-1 orally and the control group was given aripiprazole 10-20 mg·d-1orally,both were treated for 6 weeks.Clinical efficacy of the two groups,the response rate at endpoint,the changes from baseline to endpoint of Positive and Negative Syndrome Scale(PANSS),Clinical Global Impression-Improvement(CGI-S),Personal and Social Performance scale(PSP),PANSS Positive syndrome subscale,PANSS negative syndrome subscale were compared.The incidence of treatment-related adverse events in two groups were compared.Results There were 184 patients in treatment group and 186 patients in control group.After treatment,the response rates of treatment group and control group were 79.50%(140 cases/184 cases)and 82.40%(150 cases/186 cases),the scores of CGI-I of treatment group and control group were(2.00±1.20)and(1.90±1.01),with no significant difference(all P>0.05).From baseline to Week 6,the mean change of PANSS total score wese(-30.70±16.96)points in treatment group and(-32.20±17.00)points in control group,with no significant difference(P>0.05).The changes of CGI-S scores in treatment group and control group were(-2.00±1.27)and(-1.90±1.22)points,PSP scores were(18.80±14.77)and(19.20±14.55)points,PANSS positive syndrome scores were(-10.30±5.93)and(-10.80±5.81)points,PANSS negative syndrome scores were(-6.80±5.98)and(-7.30±5.15)points,with no significant difference(P>0.05).There was no significant difference in the incidence of treatment-related adverse events between the two group(69.00%vs.64.50%,P>0.05).Conclusion The non-inferiority of Brexpiprazole to aripiprazole was established,with comparable efficacy and acceptability.
3.Development of a High-throughput Sequencing Platform for Detection of Viral Encephalitis Pathogens Based on Amplicon Sequencing
Li Ya ZHANG ; Zhe Wen SU ; Chen Rui WANG ; Yan LI ; Feng Jun ZHANG ; Hui Sheng LIU ; He Dan HU ; Xiao Chong XU ; Yu Jia YIN ; Kai Qi YIN ; Ying HE ; Fan LI ; Hong Shi FU ; Kai NIE ; Dong Guo LIANG ; Yong TAO ; Tao Song XU ; Feng Chao MA ; Yu Huan WANG
Biomedical and Environmental Sciences 2024;37(3):294-302
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing. Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing. Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
4.Correction between hand hygiene product consumption and hand hygiene compliance in intensive care units of 74 medical institutions in Shanghai
Hong-Ping PAN ; Meng-Ge HAN ; Qing-Feng SHI ; Bi-Jie HU ; Xiao-Dong GAO
Chinese Journal of Infection Control 2024;23(3):291-297
Objective To understand the consumption of hand hygiene(HH)products and HH compliance in in-tensive care units(ICUs)of secondary and higher grade medical institutions(MIs)in Shanghai,and provide basis for further monitoring of HH among health care workers(HCWs).Methods Through healthcare-associated infec-tion surveillance system,the consumption of HH products and HH compliance in ICUs from secondary and higher grade MIs in Shanghai in 2017-2021 were analyzed.Results 105 ICUs from 74 MIs were included in analysis,the average consumption of HH products was 79.24(44.88-258.63)mL/(bed·day),with statistically significant difference among different types of ICUs(P<0.001).The average consumption of HH products increased from 65.75 mL/(bed·day)in 2017 to 87.55 mL/(bed·day)in 2021,showing an increasing trend year by year(P<0.001).HCWs'HH compliance rate was 82.13%,with the highest in nurses(86.59%)and the lowest(48.90%)in medical technicians,HH compliance rates of HCWs of different occupations were statistically significant different(P<0.001).Among the implementation modes of HH,39.86%used running water for hand washing,42.27%used alcohol-based hand rub to wipe hands,13.22%didn't take HH measures,and 4.65%didn't take HH mea-sures when wearing gloves,with statistically significant differences among different HH implementation modes of HCWs(P<0.001).There was a positive correlation between the average consumption of HH products per bed·day and HCWs'HH compliance rate(r=0.703,P<0.05).Conclusion The average consumption of HH products per bed·day and HH compliance rate of HCWs in ICUs in Shanghai presents an increasing trend year by year.There are differences in the average consumption of HH products per bed·day and HH compliance rate among different types of ICUs.The implementation of HH can be evaluated by continuously surveillance on the average consumption of HH products per bed·day.
5.Identification of key genes in Wilms tumor based on high-throughput RNA sequencing and their impacts on prognosis and immune responses
Zhiqiang GAO ; Jie LIN ; Peng HONG ; Zaihong HU ; Junjun DONG ; Qinlin SHI ; Xiaomao TIAN ; Feng LIU ; Guanghui WEI
Journal of Southern Medical University 2024;44(4):727-738
Objective To identify the key genes differentially expressed in Wilms tumor and analyze their potential impacts on prognosis and immune responses of the patients. Methods High-throughput RNA sequencing was used to identify the differentially expressed mRNAs in clinical samples of Wilms tumor and paired normal tissues, and their biological functions were analyzed using GO, KEGG and GSEA enrichment analyses. The hub genes were identified using STRING database, based on which a prognostic model was constructed using LASSO regression. The mutations of the key hub genes were analyzed and their impacts on immunotherapy efficacy was predicted using the cBioPortal platform. RT-qPCR was used to verify the differential expressions of the key hub genes in Wilms tumor. Results Of the 1612 differentially expressed genes identified in Wilms tumor, 1030 were up-regulated and 582 were down-regulated, involving mainly cell cycle processes and immune responses. Ten hub genes were identified, among which 4 genes (TP53, MED1, CCNB1 and EGF) were closely related to the survival of children with Wilms tumor. A 3-gene prognostic signature was constructed through LASSO regression analysis, and the patients stratified into with high- and low-risk groups based on this signature had significantly different survival outcomes (HR=1.814, log-rank P=0.002). The AUCs of the 3-, 5-and 7-year survival ROC curves of this model were all greater than 0.7. The overall mutations in the key hub genes or the individual mutations in TP53/CCNB1 were strongly correlated with a lower survival rates, and a high TP53 expression was correlated with a poor immunotherapy efficacy. RT-qPCR confirmed that the key hub genes had significant differential expressions in Wilms tumor tissues and cells. Conclusion TP53 gene plays an important role in the Wilms tumor and may potentially serve as a new immunotherapeutic biomarker as well as a therapeutic target.
6.Nanozyme-based Spinal Cord Injury Treatment
Shi-Qun CHEN ; Yi-Li WANG ; Zuo-Hong CHEN ; Hao WANG ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2024;51(11):2905-2920
Traumatic spinal cord injury (SCI) refers to damage to the structure and function of spinal cord caused by external trauma. This damage results in the loss of sensation, movement, or autonomous functions, which can lead to partial or complete paralysis and impact the patients’ independence and quality of life. Studying drugs related to spinal cord injuries and their mechanisms of action will help enhance patients’ quality of life and alleviate social and economic burdens. Traumatic spinal cord injury can be categorized into primary and secondary injuries. It leads to ongoing neurodegeneration, inflammation, and scarring, necessitating continuous intervention to reduce the cascading effects of secondary injuries. Regenerative repair of SCI has been one of the most challenging problems in medicine. It is characterized by the involvement of microglia, phagocytes (including neutrophils and monocytes), and antigen-presenting cells of the central nervous system, such as dendritic cells. These inflammatory mediators contribute to axonal demyelination and degeneration, leading to severe nerve damage. Currently, there has been little progress in the clinical treatment of SCI. Current clinical modalities, such as surgical interventions and hormone shock therapies, have not yielded specific pharmacotherapeutic options, hindering significant functional recovery. The current treatment methods are ineffective in alleviating oxidative stress and neuroinflammatory responses caused by spinal cord injury. They also do not offer neural protection, resulting in ongoing neurofunctional degradation. Intravenous injection of methylprednisolone through the arm has been used as a treatment option for spinal cord injury. Recent studies have shown that the potential side effects of the drug, such as blood clots and pneumonia, outweigh its benefits. Methylprednisolone is no longer recommended for the routine treatment of spinal cord injury. In recent years, significant progress has been made in spinal cord injury intervention through the use of nanotechnology and biomaterials. Nanozymes can enhance the therapeutic efficacy of spinal cord injury by catalyzing the clearance of free radicals similar to enzymes and suppressing inflammatory responses. Nanozymes can reduce the degree of fibrosis, promote neuron survival and angiogenesis, and provide favorable conditions for tissue regeneration. Through in vitro and in vivo toxicology experiments, it was found that the nanozyme demonstrates good biocompatibility and safety. It did not cause any significant changes in body weight, hematological indicators, or histopathology. These findings indicate the potential for its clinical applications. Based on current research results and discoveries, nanozymes have broad application prospects in the biomedical field. There are numerous potential research directions and application areas that are worthy of further exploration and development. Although there have been preliminary studies on the catalytic performance of nanozymes, further research is needed to thoroughly investigate their catalytic mechanisms. Further exploration of the interaction between nanozymes and substrates, reaction kinetics, and factors affecting catalytic activity will help to better understand their mechanism of action in the field of biocatalysis.
7.Schisandrin A ameliorates DSS-induced acute ulcerative colitis in mice via regulating the FXR signaling pathway
Jia-rui JIANG ; Kua DONG ; Yu-chun JIN ; Xin-ru YANG ; Yi-xuan LUO ; Shu-yang XU ; Xun-jiang WANG ; Li-hua GU ; Yan-hong SHI ; Li YANG ; Zheng-tao WANG ; Xu WANG ; Li-li DING
Acta Pharmaceutica Sinica 2024;59(5):1261-1270
Inflammatory bowel disease (IBD) is characterized by chronic relapsing intestinal inflammation and encompasses ulcerative colitis (UC) and Crohn's disease (CD). IBD has emerged as a global healthcare problem. Clinically efficacious therapeutic agents are deficient. This study concentrates on models of ulcerative colitis with the objective of discovering novel therapeutic strategies. Previous investigations have established that schisandrin A demonstrates anti-inflammatory effects
8.Quality evaluation of Callicarpa nudiflora from Hainan Province based on simultaneous determination of six anti-inflammatory active components by HPLC
Juan CHEN ; Hong HU ; Yue SHI ; Xing-dong KANG ; Shu-mei WANG ; Yuan-yuan XIE
Acta Pharmaceutica Sinica 2024;59(5):1408-1421
The anti-inflammatory efficacy of
9.Analysis Strategy of Deep Vein Thrombosis Metabolomic Biomarkers Based on Machine Learning Algorithms
Ming-Feng LIU ; Yan-Juan WU ; Shi-Dong ZHOU ; Li-Hong DANG ; Jian LI ; Yan DU ; Jun-Hong SUN ; Jie CAO
Chinese Journal of Analytical Chemistry 2024;52(7):1039-1049,后插1-后插4,封3
Deep vein thrombosis(DVT)is a common peripheral vascular disease in clinical practice.The lack of precise and efficient early diagnostic techniques renders it susceptible to being overlooked or misdiagnosed,and therefore,identifying trustworthy biomarkers is a major issue that has to be resolved.In this study,the endogenous metabolites in the urine of DVT rats were screened by metabolomics technology based on gas chromatograph-mass spectrometry(GC-MS)and the characteristic metabolites were identified by multiple feature selection algorithms and multivariate statistical analysis,for the development of a machine learning-based diagnostic model for DVT.The urine samples in metabolic cage in the thrombus development phase(between 48 and 72 h)of rats were collected,which was used as the models for inferior vena cava ligation.The metabolic profiles of the control group and DVT were obtained using the GC-MS method.A total of 176 kinds of endogenous metabolites were identified in rat urine through comparison with the FiehnLib database,26 kinds of differential metabolites associated with DVT were screened through a combination of the Mann-Whitney U test and orthogonal partial least squares discriminant analysis(OPLS-DA),and 13 kinds of significant metabolites strongly correlated with DVT were further evaluated in conjunction with various machine learning feature selection techniques.For DVT diagnosis,machine learning models such as Gaussian Naive Bayes(GNB),support vector machine(SVM),logistic regression(LR),and linear discriminant analysis(LDA)were developed.The diagnostic model constructed using 13 kinds of key metabolites demonstrated excellent accuracy and stability,and surpassed the predictive performance of the models utilizing 176 kinds of metabolites and 26 kinds of differential metabolites,as evidenced by examination and comparison of each model's efficacy.The study showed that the integration of multiple feature selection algorithms for analyzing metabolite information in DVT rat urine was capable of effectively identifying reliable potential markers of DVT.Furthermore,the developed machine learning model offered a novel technical approach for the automated diagnosis of DVT.
10.Protective effect of placental mesenchymal stem cells in the treatment of pancreatic trauma in rats
Hong-Fei DONG ; Xi HUANG ; Zhang-Peng WANG ; Guang-Xu JING ; Ming SHI ; Xian-Hui LI ; Hong-Yu SUN
Medical Journal of Chinese People's Liberation Army 2024;49(4):439-448
Objective To investigate the protective effect of placental mesenchymal stem cells(P-MSCs)on pancreatic trauma(PT)in rats.Methods Sixty healthy adult male SD rats were randomly divided into control group,pancreatic trauma group(inject 1 ml of PBS solution locally in the pancreatic injury area and around the trauma area),and P-MSCs group[inject 1 ml of P-MSCs(1×106/ml)locally in the pancreatic injury area and around the trauma area],with 20 rats in each group.The pancreatic trauma rat model was established using a traumatic pressure of 400 kPa.Five rats were sacrificed at 1,3,5,and 7 d after modeling in each group,and serum and pancreatic tissue were collected.HE staining was used to observe the pathological changes of pancreatic tissue and pathological scores were performed.The ELISA method was used to measure the concentrations of serum amylase(AMS),lipase(LPS),tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),IL-10,and transforming growth factor-β1(TGF-β1),as well as the activities of myeloperoxidase(MPO)and superoxide dismutase(SOD)in pancreatic tissue.The TUNEL method was used to observe the level of apoptosis in pancreatic tissue was observed by the TUNEL method.Results Compared with control group,pancreatic trauma group and P-MSCs group showed significant differences after pancreatic trauma,including the generation of peritoneal fluid increased(P<0.05),the ratio of pancreas to body weight and the total score of pancreatic tissue pathological damage increased(P<0.05),and serum levels of AMS,LPS,TNF-α,IL-6,and MPO activity increased early and showed a decreasing trend over time(P<0.05),while anti-inflammatory factors IL-10 and SOD activity showed an increasing trend over time(P<0.01),level of TGF-β1 in the early decline showed an upward trend over time(P<0.01),and the apoptosis index(AI)significantly increased(P<0.001).Compared with pancreatic trauma group,P-MSCs group showed an improvement in the overall morphology of pancreatic tissue,the generation of peritoneal fluid decreased(P<0.001),the pancreas to body weight ratio and the total score of pancreatic tissue pathological damage decreased(P<0.05),and serum levels of AMS,LPS,IL-6,TNF-α and MPO activity returned to normal levels faster(P<0.05);and the rate of anti-inflammatory factors IL-10,TGF-β1 and SOD activity elevation increased(P<0.05),the AI increased(P<0.001).Conclusion P-MSCs can achieve therapeutic effects on pancreatic trauma in rats by promoting pancreatic tissue repair,reducing local and systemic inflammation,improving tissue oxidative stress,and enhancing pancreatic acinar cell apoptosis.

Result Analysis
Print
Save
E-mail