1.Assessment of the Therapeutic Effectiveness of Glutathione-Enhanced Mesenchymal Stem Cells in Rat Models of Chronic Bladder Ischemia-Induced Overactive Bladder and Detrusor Underactivity
Jung Hyun SHIN ; Hwan Yeul YU ; Hyungu KWON ; Hong Duck YUN ; Chae-Min RYU ; Dong-Myung SHIN ; Myung-Soo CHOO
International Journal of Stem Cells 2025;18(1):72-86
Overactive bladder (OAB) and detrusor underactivity (DUA) are representative voiding dysfunctions with a chronic nature and limited treatment modalities, and are ideal targets for stem cell therapy. In the present study, we investigated the therapeutic efficacy of human mesenchymal stem cells (MSCs) with a high antioxidant capacity generated by the Primed Fresh OCT4 (PFO) procedure in chronic bladder ischemia (CBI)-induced OAB and DUA rat models. Sixteen-week-old male Sprague-Dawley rats were divided into three groups (sham, OAB or DUA, and stem cell groups; n=10, respectively).CBI was induced by bilateral iliac arterial injury (OAB, 10 times; DUA, 30 times) followed by a 1.25% cholesterol diet for 8 weeks. Seven weeks after injury, rats in the stem cell and other groups were injected with 1×10 6 PFO-MSCs and phosphate buffer, respectively. One week later, bladder function was analyzed by awake cystometry and bladders were harvested for histological analysis. CBI with a high-fat diet resulted in atrophy of smooth muscle and increased collagen deposits correlating with reduced detrusor contractility in both rat models. Arterial injury 10 and 30 times induced OAB (increased number of non-voiding contractions and shortened micturition interval) and DUA (prolonged micturition interval and increased residual volume), respectively. Injection of PFO-MSCs with the enhanced glutathione dynamics reversed both functional and histological changes; it restored the contractility, micturition interval, residual volume, and muscle layer, with reduced fibrosis. CBI followed by a high-fat diet with varying degrees of arterial injury induced OAB and DUA in rats. In addition, PFO-MSCs alleviated functional and histological changes in both rat models.
2.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
3.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
4.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
5.Assessment of the Therapeutic Effectiveness of Glutathione-Enhanced Mesenchymal Stem Cells in Rat Models of Chronic Bladder Ischemia-Induced Overactive Bladder and Detrusor Underactivity
Jung Hyun SHIN ; Hwan Yeul YU ; Hyungu KWON ; Hong Duck YUN ; Chae-Min RYU ; Dong-Myung SHIN ; Myung-Soo CHOO
International Journal of Stem Cells 2025;18(1):72-86
Overactive bladder (OAB) and detrusor underactivity (DUA) are representative voiding dysfunctions with a chronic nature and limited treatment modalities, and are ideal targets for stem cell therapy. In the present study, we investigated the therapeutic efficacy of human mesenchymal stem cells (MSCs) with a high antioxidant capacity generated by the Primed Fresh OCT4 (PFO) procedure in chronic bladder ischemia (CBI)-induced OAB and DUA rat models. Sixteen-week-old male Sprague-Dawley rats were divided into three groups (sham, OAB or DUA, and stem cell groups; n=10, respectively).CBI was induced by bilateral iliac arterial injury (OAB, 10 times; DUA, 30 times) followed by a 1.25% cholesterol diet for 8 weeks. Seven weeks after injury, rats in the stem cell and other groups were injected with 1×10 6 PFO-MSCs and phosphate buffer, respectively. One week later, bladder function was analyzed by awake cystometry and bladders were harvested for histological analysis. CBI with a high-fat diet resulted in atrophy of smooth muscle and increased collagen deposits correlating with reduced detrusor contractility in both rat models. Arterial injury 10 and 30 times induced OAB (increased number of non-voiding contractions and shortened micturition interval) and DUA (prolonged micturition interval and increased residual volume), respectively. Injection of PFO-MSCs with the enhanced glutathione dynamics reversed both functional and histological changes; it restored the contractility, micturition interval, residual volume, and muscle layer, with reduced fibrosis. CBI followed by a high-fat diet with varying degrees of arterial injury induced OAB and DUA in rats. In addition, PFO-MSCs alleviated functional and histological changes in both rat models.
6.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
7.Assessment of the Therapeutic Effectiveness of Glutathione-Enhanced Mesenchymal Stem Cells in Rat Models of Chronic Bladder Ischemia-Induced Overactive Bladder and Detrusor Underactivity
Jung Hyun SHIN ; Hwan Yeul YU ; Hyungu KWON ; Hong Duck YUN ; Chae-Min RYU ; Dong-Myung SHIN ; Myung-Soo CHOO
International Journal of Stem Cells 2025;18(1):72-86
Overactive bladder (OAB) and detrusor underactivity (DUA) are representative voiding dysfunctions with a chronic nature and limited treatment modalities, and are ideal targets for stem cell therapy. In the present study, we investigated the therapeutic efficacy of human mesenchymal stem cells (MSCs) with a high antioxidant capacity generated by the Primed Fresh OCT4 (PFO) procedure in chronic bladder ischemia (CBI)-induced OAB and DUA rat models. Sixteen-week-old male Sprague-Dawley rats were divided into three groups (sham, OAB or DUA, and stem cell groups; n=10, respectively).CBI was induced by bilateral iliac arterial injury (OAB, 10 times; DUA, 30 times) followed by a 1.25% cholesterol diet for 8 weeks. Seven weeks after injury, rats in the stem cell and other groups were injected with 1×10 6 PFO-MSCs and phosphate buffer, respectively. One week later, bladder function was analyzed by awake cystometry and bladders were harvested for histological analysis. CBI with a high-fat diet resulted in atrophy of smooth muscle and increased collagen deposits correlating with reduced detrusor contractility in both rat models. Arterial injury 10 and 30 times induced OAB (increased number of non-voiding contractions and shortened micturition interval) and DUA (prolonged micturition interval and increased residual volume), respectively. Injection of PFO-MSCs with the enhanced glutathione dynamics reversed both functional and histological changes; it restored the contractility, micturition interval, residual volume, and muscle layer, with reduced fibrosis. CBI followed by a high-fat diet with varying degrees of arterial injury induced OAB and DUA in rats. In addition, PFO-MSCs alleviated functional and histological changes in both rat models.
8.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
9.Survey on Treatment-Seeking Patterns in Patients With Allergic Rhinitis
Gwanghui RYU ; Do Hyun KIM ; Chang Yeong JEONG ; Sang Min LEE ; Il Hwan LEE ; Soo Whan KIM ; Hyeon-Jong YANG ; Mi-Ae KIM ; Dong-Kyu KIM ;
Journal of Rhinology 2024;31(3):138-144
Background and Objectives:
The medications preferred by patients for allergic rhinitis and their usage remain unclear. This study investigated treatment-seeking behaviors in patients with allergic rhinitis, including medical treatments, environmental controls, and surgical treatments.
Methods:
In this study, a cross-sectional survey was conducted by internal medicine, pediatric, or otorhinolaryngology physicians at university hospitals from January 2022 to April 2022. A questionnaire was administered to patients with confirmed allergic rhinitis to collect information regarding medical treatments (prescription and over-the-counter medication use patterns, comorbid asthma, and allergen-specific immunotherapy), environmental controls (usage of air purifiers and pet avoidance), and experiences with surgical treatments.
Results:
We included 51 patients with allergic rhinitis with a mean age of 31.6±16.0 years. Among them, 47 (92.2%) and 6 (11.8%) patients had pollen allergies and asthma, respectively. Furthermore, 41 (80.4%) patients took prescribed medicines, while 39 (76.5%) patients only used the medication when experiencing symptoms. Thirty patients (58.8%) reported concurrent use of intranasal sprays and oral medications. Thirty-three patients (64.7%) reported awareness of immunotherapy, and there were no preferential differences between subcutaneous (52%) and sublingual immunotherapy (48%). Of the 36 patients (70.6%) who reported using an air purifier, 38.9% considered it helpful in preventing allergic rhinitis symptoms. Fourteen patients (27.5%) currently or previously had a companion animal, with half experiencing worsening of symptoms. Twelve patients had received surgical treatment and reported high satisfaction levels (41.6%, very satisfied; 41.6%, satisfied).
Conclusion
Patients with allergic rhinitis showed similar preferences for oral and spray medications. They also showed satisfaction with surgical treatments and an interest in the environmental management of allergic rhinitis.
10.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.

Result Analysis
Print
Save
E-mail