1.Effects of Oridonin on Platelet Function and Related Mechanisms.
Yu LI ; Rong YAN ; Meng-Nan YANG ; Kang-Xi ZHOU ; Ke-Sheng DAI
Journal of Experimental Hematology 2025;33(4):1104-1112
OBJECTIVE:
To investigate the effects of oridonin on platelet function and related mechanisms.
METHODS:
Washed platelets from healthy adults and mice were incubated with different concentrations of oridonin (2.5, 5 and 10 μmol/L) in vitro . The surface expression level of P-selectin and the activation of integrin αIIbβ3 in platelets were detected by flow cytometry, and the aggregation ability of platelets under the stimulation by various agonists was detected by light transmission aggregometry. The expression of P-AKT (Ser473) was detected by protein immunoblotting. Arterial thrombosis model was established in mice with mesenteric injury induced by ferric chloride, and tail hemorrhage model was established by cutting off the tail of mice. The effect of intraperitoneal injection of oridonin (10 mg/kg) on thrombosis and haemostasis was tested.
RESULTS:
Oridonin inhibited platelet P-selectin expression and integrin αIIbβ3 activation. In the presence of different stimulants, oridonin inhibited platelet aggregation in a concentration-dependent manner. The phosphorylation level of AKT Ser473 was reduced in the groups treated with different concentrations of oridonin. Oridonin significantly prolonged the time of mesenteric artery thrombosis in mice, but did not affect the tail bleeding time.
CONCLUSION
Oridonin inhibits platelet activation, aggregation, and thrombosis by inhibiting AKT phosphorylation, and may be used as a potential antiplatelet drug.
Diterpenes, Kaurane/pharmacology*
;
Animals
;
Mice
;
Blood Platelets/drug effects*
;
Platelet Aggregation/drug effects*
;
P-Selectin/metabolism*
;
Thrombosis
;
Platelet Glycoprotein GPIIb-IIIa Complex/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Humans
;
Phosphorylation
;
Platelet Activation/drug effects*
2.Network Pharmacology and in vitro Experimental Verification on Intervention of Oridonin on Non-Small Cell Lung Cancer.
Ke CHANG ; Li-Fei ZHU ; Ting-Ting WU ; Si-Qi ZHANG ; Zi-Cheng YU
Chinese journal of integrative medicine 2025;31(4):347-356
OBJECTIVE:
To explore the key target molecules and potential mechanisms of oridonin against non-small cell lung cancer (NSCLC).
METHODS:
The target molecules of oridonin were retrieved from SEA, STITCH, SuperPred and TargetPred databases; target genes associated with the treatment of NSCLC were retrieved from GeneCards, DisGeNET and TTD databases. Then, the overlapping target molecules between the drug and the disease were identified. The protein-protein interaction (PPI) was constructed using the STRING database according to overlapping targets, and Cytoscape was used to screen for key targets. Molecular docking verification were performed using AutoDockTools and PyMOL software. Using the DAVID database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. The impact of oridonin on the proliferation and apoptosis of NSCLC cells was assessed using cell counting kit-8, cell proliferation EdU image kit, and Annexin V-FITC/PI apoptosis kit respectively. Moreover, real-time quantitative PCR and Western blot were used to verify the potential mechanisms.
RESULTS:
Fifty-six target molecules and 12 key target molecules of oridonin involved in NSCLC treatment were identified, including tumor protein 53 (TP53), Caspase-3, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 8 (MAPK8), and mammalian target of rapamycin (mTOR). Molecular docking showed that oridonin and its key target molecules bind spontaneously. GO and KEGG enrichment analyses revealed cancer, apoptosis, phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), and other signaling pathways. In vitro experiments showed that oridonin inhibited the proliferation, induced apoptosis, downregulated the expression of Bcl-2 and Akt, and upregulated the expression of Caspase-3.
CONCLUSION
Oridonin can act on multiple targets and pathways to exert its inhibitory effects on NSCLC, and its mechanism may be related to upregulating the expression of Caspase-3 and downregulating the expressions of Akt and Bcl-2.
Diterpenes, Kaurane/chemistry*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Humans
;
Network Pharmacology
;
Lung Neoplasms/pathology*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Cell Line, Tumor
;
Signal Transduction/drug effects*
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Reproducibility of Results
;
Gene Ontology
3.Low-intensity pulsed ultrasound and oridonin synergistically induce ferroptosis of pancreatic cancer cells by activating PIEZO1 via the Nrf2/HO-1/GPX4 pathway.
Bihang SUN ; Yujun GUO ; Yulin QI ; Dan YAO ; Wenzhi CHEN ; Nianzhi CHEN
Journal of Southern Medical University 2025;45(10):2160-2170
OBJECTIVES:
To evaluate the inhibitory effect of oridonin against proliferation of pancreatic cancer cells and the mechanism underlying the synergistic effect of low-intensity pulsed ultrasound (LIPUS).
METHODS:
PANC-1 cells treated with different concentrations of oridonin were examined for changes in cell proliferation using CCK-8 assay and in MDA, GSH and ATP levels using flow cytometry. The protein expressions of GPX4, Nrf2 and HO-1 in the treated cells were detected with Western blotting. The effect of Fer-1, a ferroptosis inhibitor, on proliferation of oridonin-treated cells were assessed, and the effects of oridonin combined with LIPUS on PIEZO1 protein expression was evalauted using Western blotting. A C57BL/6J mouse model bearing pancreatic cancer cell xenograft was established and treated with oridonin, LIPUS, or both, and the histological changes in the tumor tissues and tumor cell proliferation were examined with HE staining and immunohistochemistry for Ki67; the changes in GPX4 expression in the tumor tissues were detected using Western blotting and immunofluorescence staining.
RESULTS:
In PANC-1 cells, oridonin treatment significantly inhibited cell proliferation, increased intracellular Fe2+, ROS, and MDA levels, and decreased GSH and ATP levels. Oridonin also resulted in lowered GPX4 and increased HO-1 and Nrf2 protein expression levels in the cells. The combined treatment with LIPUS signficiantly enhanced the inhibitory effect of oridonin on PANC-1 cell viability in vitro and on xenograft growth in the mouse models, resulting also in more obvious reduction of the intensity of Ki67 staining and GPX4 protein expression and more pronounced increase of PIEZO1 protein expression in the tumor tissues in the mouse models.
CONCLUSIONS
LIPUS enhances the effect of oridonin to promote ferroptosis of pancreatic cancer cells by activating PIEZO1 through the Nrf2/HO-1/GPX4 pathway.
Ferroptosis/drug effects*
;
Animals
;
Pancreatic Neoplasms/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Humans
;
Cell Line, Tumor
;
Mice
;
Heme Oxygenase-1/metabolism*
;
Diterpenes, Kaurane/pharmacology*
;
Cell Proliferation/drug effects*
;
Mice, Inbred C57BL
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Ion Channels/metabolism*
;
Ultrasonic Waves
;
Signal Transduction
4.Ent-pimarane and ent-kaurane diterpenoids from Siegesbeckiapubescens and their anti-endothelial damage effect in diabetic retinopathy.
Mengjia LIU ; Tingting LUO ; Rongxian LI ; Wenying YIN ; Fengying YANG ; Di GE ; Na LIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):234-244
Diabetic retinopathy, a prevalent and vision-threatening microvascular complication of diabetes mellitus, is the leading cause of blindness among middle-aged and elderly individuals. Natural diterpenoids isolated from Siegesbeckia pubescens demonstrate potent anti-inflammatory properties. This study aimed to identify novel bioactive diterpenoids from S. pubescens and investigate their effects on oxidative stress and inflammatory responses in diabetic retinopathy, both in vitro and in vivo. Three new ent-pimarane-type diterpenoids (1-3) and six known compounds (4-9) were isolated from the aerial parts of S. pubescens. Their structures were elucidated through spectroscopic data interpretation, and absolute configurations were determined by comparing calculated and experimental electronic circular dichroism (ECD) spectra. Among these compounds, 14β,16-epoxy-ent-3β,15α,19-trihydroxypimar-7-ene (5) exhibited the most potent protective effect against high glucose and interleukin-1β (IL-1β)-stimulated human retinal endothelial cells. Mechanistically, compound 5 promoted endothelial cell survival while ameliorating oxidative stress and inflammatory response in diabetic retinopathy, both in vivo and in vitro. These findings not only suggest that diterpenoids such as compound 5 are important anti-inflammatory constituents in S. pubescens, but also indicate that compound 5 may serve as a lead compound for preventing or treating vascular complications associated with diabetic retinopathy.
Diabetic Retinopathy/metabolism*
;
Humans
;
Oxidative Stress/drug effects*
;
Animals
;
Diterpenes, Kaurane/administration & dosage*
;
Asteraceae/chemistry*
;
Male
;
Endothelial Cells/drug effects*
;
Abietanes/administration & dosage*
;
Molecular Structure
;
Mice
;
Anti-Inflammatory Agents/chemistry*
;
Plant Extracts/chemistry*
;
Mice, Inbred C57BL
5.Site-directed mutagenesis of ent-kaurane diterpenoid C-19 oxidase TwKO in Tripterygium wilfordii.
Rong-Feng WANG ; Zheng LIU ; Xin-Meng WANG ; Wei GAO ; Jia-Dian WANG ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2024;49(24):6667-6675
Tripterifordin and neotripterifordin are important ent-kaurane diterpenoids in the Chinese medicinal herb Tripterygium wilfordii, possessing significant anti-HIV(human immunodeficiency virus) activity. On the basis of elucidating the natural biosynthetic pathways of these compounds, heterologous production with microbial cell factories can help to alleviate the reliance on plant resources and provide abundant raw materials for sustainable production. TwKO is the first CYP450 enzyme involved in the biosynthesis of tripterifordin and neotripterifordin. This study aimed to enhance the catalytic activity of TwKO by site-directed mutagenesis to benefit the production of tripterifordin and neotripterifordin in yeast. The AlphaFold DB established based on the AlphaFold 2 was employed to obtain the protein model of TwKO. According to multiple sequence alignments and principles of natural evolution, the key residues influencing the binding of TwKO to the substrate were identified. Subsequently, functional characterization of the mutants were conducted in Saccharomyces cerevisiae. A total of 71 mutants were obtained, among which 11 and 11 mutants had the abilities of enhancing the production of 16α-hydroxy-ent-kaurenol and 16α-hydroxy-ent-kaurenoic acid, respectively. In addition, 10 mutants could increase the proportion of the oxidation product of 16α-hydroxy-ent-kaurenol. In particular, R304 was identified as a key residue affecting the catalytic specificity of TwKO, the mutation of which led to the specific prodiction of 16α-hydroxy-ent-kaurenol. This study was the first to reveal the key residue affecting the catalytic activity of TwKO and obtained the mutants with increased TwKO activity, lay a foundation for the biosynthesis of tripterifordin and neotripterifordin.
Tripterygium/chemistry*
;
Mutagenesis, Site-Directed
;
Diterpenes, Kaurane/chemistry*
;
Plant Proteins/chemistry*
;
Cytochrome P-450 Enzyme System/chemistry*
;
Saccharomyces cerevisiae/metabolism*
6.Application of strigolactone analogs in storage of Gastrodia elata.
Yi-Ying CAO ; Yu-Chao CHEN ; Tian-Rui LIU ; Yu-Yang ZHAO ; Jun-Hui ZHOU ; Yuan YUAN
China Journal of Chinese Materia Medica 2023;48(12):3149-3155
This study explored the preservation effect of strigolactone analogs on Gastrodia elata tubers and screened out the suitable preservation measures of G. elata to provide a safer and more effective method for its storage and preservation. Fresh G. elata tubers were treated with 7FGR24, 2,4-D isooctyl ester, and maleic hydrazide, respectively. The growth of flower buds, the activities of CAT, and MDA, and the content of gastrodin and p-hydroxybenzyl alcohol were measured to compare the effects of different compounds on the storage and preservation of G. elata. The effects of different storage temperatures on the preservation of 7FGR24 were compared and analyzed. The gibberellin signal transduction receptor gene GeGID1 was cloned, and the effect of 7FGR24 on the expression level of GeGID1 was analyzed by quantitative polymerase chain reaction(qPCR). The toxicity of the G. elata preservative 7FGR24 was analyzed by intragastric administration in mice to evaluate its safety. The results showed that compared with 2,4-D isooctyl ester and maleic hydrazide, 7FGR24 treatment had a significant inhibitory effect on the growth of G. elata flower buds, and the CAT enzyme activity of G. elata was the highest, indicating that its preservation effect was stronger. Different storage temperatures had different effects on the preservation of G. elata, and the preservation effect was the strongest at 5 ℃. The open reading frame(ORF) of GeGID1 gene was 936 bp in length, and its expression level was significantly down-regulated after 7FGR24 treatment, indicating that 7FGR24 may inhibit the growth of flower buds by inhibiting the gibberellin signal of G. elata, thereby exerting a fresh-keeping effect. Feeding preservative 7FGR24 had no significant effect on the behavior and physiology of mice, indicating that it had no obvious toxicity. This study explored the application of the strigolactone analog 7FGR24 in the storage and preservation of G. elata and preliminarily established a method for the storage and preservation of G. elata, laying a foundation for the molecular mechanism of 7FGR24 in the storage and preservation of G. elata.
Animals
;
Mice
;
Gastrodia
;
Gibberellins
;
Maleic Hydrazide
;
Esters
7.Diterpenoids from Rabdosia flexicaulis.
Xu LIU ; Chun-Xia CHEN ; Ji-Zhou WU
China Journal of Chinese Materia Medica 2022;47(2):433-436
The genus Rabdosia is famous for the abundance of diverse and novel ent-kaurane diterpenoids. However, only a few ent-kauranoids have been discovered from R. flexicaulis since the investigation on its chemical constituents is not systematic. To find novel bioactive diterpenoids, the ethyl acetate extract of the above ground part of R. flexicaulis in Daofu County, Sichuan Province was obtained by column chromatography. One new compound and five known ones were identified as flexicaulin E(1), forrestin B(2), inf-lexarabdonin D(3), 7α-hydroxydehydroabietic acid(4), 15-hydroxydehydroabietic acid(5), and pomiferin F(6) by spectral techniques. Compounds 1-3 were the ent-kaurane diterpenoids isolated from this species for the first time. Compounds 4-6, aromatic abie-tanoids, were isolated from the genus Rabdosia for the first time.
Diterpenes
;
Diterpenes, Kaurane
;
Isodon/chemistry*
;
Molecular Structure
;
Plant Extracts/chemistry*
8.Research progress on mechanism of phytohormones in regulating flavonoid metabolism.
Jiang-Shan YU ; Miao-Miao ZHANG ; Jiang SHI ; Yu YANG ; Xue MENG ; Jian-Ping XUE ; Wei SUN ; Hui-Hua WAN ; Wei SHENG
China Journal of Chinese Materia Medica 2021;46(15):3806-3813
Phytohormones play an important role at all stages of plant growth, influencing plant growth and development and regulating plant secondary metabolism, such as the synthesis of flavone, flavonol, anthocyanin, and other flavonoids. Flavonoids, a group of important secondary metabolites ubiquitous in plants, have antioxidative, anti-microbial, and anti-inflammatory activities and thus have a wide range of potential applications in Chinese medicine and food nutrition. With the development of biotechnology, phytohormones' regulation on flavonoids has become a research focus in recent years. This study reviewed the research progress on the mechanism of common phytohormones, such as abscisic acid, gibberellin, methyl jasmonate, and salicylic acid, in regulating flavonoid metabolism, and discussed the molecular mechanism of the synthesis and accumulation of flavonoids, aiming at clarifying the key role of phytohormones in modulating flavonoid metabolism. The result is of guiding significance for improving the content of flavonoids in plants through rational use of phytohormones and of reference value for exploring the mechanism of hormones in regulating flavonoid metabolism.
Abscisic Acid
;
Flavonoids
;
Gene Expression Regulation, Plant
;
Gibberellins
;
Plant Development
;
Plant Growth Regulators
9.Preparation and in vitro quality evaluation of self-microemulsion co-loaded with tenuifolin and β-asarone.
Ting ZHANG ; Jing WANG ; Bao-de SHEN ; Jun-Jun ZHU ; Li-Qiang WANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2020;45(24):5988-5995
To prepare and optimize the self-microemulsion co-loaded with tenuifolin and β-asarone(TF/ASA-SMEDDS) and evaluate its quality. The prescription compositions of TF/ASA-SMEDDS were screened by solubility test, single factor test and pseudo-tern-ary phase diagram, and the prescriptions were further optimized by Box-Behnken response surface method, with the drug loading and particle size as the evaluation indexes. Then the optimized TF/ASA-SMEDDS was evaluated for emulsified appearance, particle size, morphology and drug release in vitro. The optimized prescription for TF/ASA-SMEDDS was as follows: caprylic citrate triglyceride polyoxyethylene castor oil-glycerol(10.8∶39.2∶50), drug loading of(5.563±0.065) mg·g~(-1) for tenuifolin and(5.526±0.022) mg·g~(-1) for β-asarone; uniform and transparent pan-blue nanoemulsion can be formed after emulsification, with particle size of(28.84±0.44) nm. TEM showed that TF/ASA-SMEDDS can form spherical droplets with a uniform particle size after emulsification; In vitro release test results showed that the drug release rate and cumulative release of tenuifolin and β-asarone were significantly improved. The preparation process of TF/ASA-SMEDDS was simple and can effectively improve in vitro release of tenuifolin and β-asarone.
Anisoles
;
Biological Availability
;
Diterpenes, Kaurane
;
Drug Delivery Systems
;
Emulsions
;
Particle Size
;
Solubility
;
Surface-Active Agents
10.Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism.
Yu-Tao HUANG ; Wei WU ; Wen-Xiong ZOU ; Hua-Ping WU ; Dong-Dong CAO
Journal of Zhejiang University. Science. B 2020;21(10):796-810
Seed vigor is a key factor affecting seed quality. The mechanical drying process exerts a significant influence on rice seed vigor. The initial moisture content (IMC) and drying temperature are considered the main factors affecting rice seed vigor through mechanical drying. This study aimed to determine the optimum drying temperature for rice seeds according to the IMC, and elucidate the mechanisms mediating the effects of drying temperature and IMC on seed vigor. Rice seeds with three different IMCs (20%, 25%, and 30%) were dried to the target moisture content (14%) at four different drying temperatures. The results showed that the drying temperature and IMC had significant effects on the drying performance and vigor of the rice seeds. The upper limits of drying temperature for rice seeds with 20%, 25%, and 30% IMCs were 45, 42, and 38 °C, respectively. The drying rate and seed temperature increased significantly with increasing drying temperature. The drying temperature, drying rate, and seed temperature showed extremely significant negative correlations with germination energy (GE), germination rate, germination index (GI), and vigor index (VI). A high IMC and drying temperature probably induced a massive accumulation of hydrogen peroxide (H2O2) and superoxide anions in the seeds, enhanced superoxide dismutase (SOD) and catalase (CAT) activity, and increased the abscisic acid (ABA) content. In the early stage of seed germination, the IMC and drying temperature regulated seed germination through the metabolism of H2O2, gibberellin acid (GA), ABA, and α-amylase. These results indicate that the metabolism of reactive oxygen species (ROS), antioxidant enzymes, GA, ABA, and α-amylase might be involved in the mediation of the effects of drying temperature on seed vigor. The results of this study provide a theoretical basis and technical guidance for the mechanical drying of rice seeds.
Abscisic Acid/metabolism*
;
Antioxidants/pharmacology*
;
Catalase/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Germination
;
Gibberellins/metabolism*
;
Hydrogen Peroxide/chemistry*
;
Malondialdehyde/chemistry*
;
Oryza/metabolism*
;
Oxygen/chemistry*
;
Plant Proteins/genetics*
;
Reactive Oxygen Species
;
Seeds/metabolism*
;
Superoxide Dismutase/metabolism*
;
Superoxides/chemistry*
;
Temperature
;
Weather
;
alpha-Amylases/metabolism*

Result Analysis
Print
Save
E-mail