1.Molecular engineering of cellulase catalytic domain based on glycoside hydrolase family.
Xiaomei ZHANG ; Dandan LI ; Lushan WANG ; Yue ZHAO ; Guanjun CHEN
Chinese Journal of Biotechnology 2013;29(4):422-433
Molecular engineering of cellulases can improve enzymatic activity and efficiency. Recently, the Carbohydrate-Active enZYmes Database (CAZy), including glycoside hydrolase (GH) families, has been established with the development of Omics and structural measurement technologies. Molecular engineering based on GH families can obviously decrease the probing space of target sequences and structures, and increase the odds of experimental success. Besides, the study of cellulase active-site architecture paves the way toward the explanation of catalytic mechanism. This review focuses on the main GH families and the latest progresses in molecular engineering of catalytic domain. Based on the combination of analysis of a large amount of data in the same GH family and their conservative active-site architecture information, rational design will be an important direction for molecular engineering and promote the rapid development of the conversion of biomass.
Catalytic Domain
;
genetics
;
Cellulase
;
chemistry
;
genetics
;
Directed Molecular Evolution
;
methods
;
Evolution, Molecular
;
Glycoside Hydrolases
;
chemistry
;
genetics
;
Protein Engineering
;
methods
2.Enhanced thermostability of Rhizopus chinensis lipase by error-prone PCR.
Rui WANG ; Xiaowei YU ; Yan XU
Chinese Journal of Biotechnology 2013;29(12):1753-1764
Directed evolution was conducted to improve the thermostability of lipase from Rhizopus chinensis CCTCC M201021. Mutations were introduced by two rounds of error-prone PCR and mutant lipase was selected by fast-blue RR top agar screening. Two positive variants were selected in the first-round and four in the second-round screening process. Ep2-4 was proved as the most thermostable lipase and its DNA sequencing revealed three amino acid substitutions: A129S, P168L and V329A. Compared with the parent, its half-life at 60 degrees C was 5.4- times longer and T50 was 7.8 degrees higher. Purified lipase of Ep2-4 was characterized and the result shows that its thermostability improved without compromising enzyme activity. According to the mimicked protein structure, mutation A129S formed a hydrogen bond with Gln133 and improved the thermostability by increasing the hydrophilicity and polarity of protein; mutation P168L by forming a hydrophobic bond with the nearby Leu164.
Cloning, Molecular
;
Directed Molecular Evolution
;
methods
;
Enzyme Stability
;
genetics
;
Hot Temperature
;
Industrial Microbiology
;
Lipase
;
chemistry
;
genetics
;
Mutation
;
Pichia
;
genetics
;
metabolism
;
Polymerase Chain Reaction
;
methods
;
Protein Engineering
;
methods
;
Rhizopus
;
enzymology
3.Design and application of high-throughput screening tools: a review.
Shuangyan TANG ; Chaoning LIANG ; Peixia JIANG
Chinese Journal of Biotechnology 2012;28(7):781-788
As an efficient and promising protein engineering strategy, directed evolution includes the construction of mutant libraries and screening of desirable mutants. A rapid and high-throughput screening method has played a critical role in the successful application of directed evolution strategy. We reviewed several high-throughput screening tools which have great potential to be applied in directed evolution. The development of powerful high-throughput screening tools will make great contributions to the advancement of protein engineering.
Directed Molecular Evolution
;
methods
;
High-Throughput Screening Assays
;
methods
;
Mutagenesis, Site-Directed
;
methods
;
Mutant Proteins
;
genetics
;
Protein Engineering
;
methods
4.Conversion of a murine monoclonal antibody A13 targeting epidermal growth factor receptor to a human monoclonal antibody by guided selection.
Ki Hwan CHANG ; Min Soo KIM ; Gwang Won HONG ; Yong Nam SHIN ; Se Ho KIM
Experimental & Molecular Medicine 2012;44(1):52-59
Epidermal growth factor receptor (EGFR) is an attractive target for tumor therapy because it is overexpressed in the majority of solid tumors and the increase in receptor expression levels has been linked with a poor clinical prognosis. Also it is well established that blocking the interaction of EGFR and the growth factors could lead to the arrest of tumor growth and possibly result in tumor cell death. A13 is a murine monoclonal antibody (mAb) that specifically binds to various sets of EGFR-expressing tumor cells and inhibits EGF-induced EGFR phosphorylation. We isolated human immunoglobulin genes by guided selection based on the mAb A13. Four different human single chain Fvs (scFvs) were isolated from from hybrid scFv libraries containing a human VH repertoire with the VL of mAb A13 and a human VL repertoire with the VH of mAb A13. All the 4 scFvs bound to EGFR-expressing A431 cells. One scFv (SC414) with the highest affinity was converted to IgG1 (ER414). The ER414 exhibited ~17 fold lower affinity compared to the A13 mAb. In addition the ER414 inhibited an EGF-induced tyrosine phosphorylation of EGFR with much lower efficacy compared to the A13 mAb and Cetuximab (Merck KgaA, Germany). We identified that the epitope of A13 mAb is retained in ER414. This approach will provide an efficient way of converting a murine mAb to a human mAb.
Animals
;
Antibodies, Monoclonal, Humanized/*genetics/immunology/therapeutic use
;
Antibody Affinity
;
Cell Line, Tumor
;
Directed Molecular Evolution/*methods
;
Epitope Mapping
;
Epitopes/genetics/immunology/therapeutic use
;
Humans
;
*Immunotherapy
;
Mice
;
Neoplasms/*therapy
;
Phosphorylation/drug effects
;
Protein Binding
;
Receptor, Epidermal Growth Factor/*antagonists & inhibitors/immunology
;
Selection, Genetic
;
Single-Chain Antibodies/*genetics/immunology/therapeutic use
5.Improvement of catalytic capability of Paecilomyces thermophila J18 thermostable beta-1,3-1,4-glucanase under acidic condition by directed evolution.
Yinan LI ; Huiyong JIA ; Qiaojuan YAN ; Zhengqiang JIANG ; Shaoqing YANG
Chinese Journal of Biotechnology 2011;27(12):1797-1804
Directed evolution was used to improve the performance of beta-1,3-1,4-glucanase (designated as PtLicl6A) from Paecilomyces thermophila J18 under acidic condition. A mutant library was constructed by error-prone PCR and DNA shuffling, and positive clones were screened by Congo red staining. More than 1 500 mutants were selected. One mutant (PtLic16AM1) exhibited an optimal activity at pH 5.5, while the optimal pH of the wild-type enzyme was 7.0. The mutant PtLic16AM1 kept the high specific activity and thermotolerence of the wild-type enzyme. Sequence analysis revealed that the mutant enzyme has four sense substitutions which caused four amino acid substitutions - namely T58S, Y110N, G195E and D221G.. Homology modeling showed that among the four amino acid substitutions, Y110N was near the active site of the enzyme, while the other three was distant. T58S and G195E may play key roles in the change of optimal pH. This study provided a new perspective of obtaining applicable 3-1,3-1,4-glucanase for industrial use.
Catalysis
;
Directed Molecular Evolution
;
methods
;
Endo-1,3(4)-beta-Glucanase
;
biosynthesis
;
genetics
;
metabolism
;
Enzyme Stability
;
Hot Temperature
;
Hydrogen-Ion Concentration
;
Mutant Proteins
;
metabolism
;
Mutation
;
Paecilomyces
;
classification
;
enzymology
;
genetics
;
Protein Engineering
;
methods
6.Directed evolution of aflatoxin detoxifzyme in vitro by error-prone PCR.
Sai ZHANG ; Keke XING ; Yadong HU ; Chunfang XIE ; Daling LIU ; Dongsheng YAO
Chinese Journal of Biotechnology 2011;27(7):1100-1108
The experiment was conducted by directed evolution strategy (error-prone PCR) to improve the activity of aflatoxin detoxifzyme with the high-throughput horse radish peroxidas and recessive brilliant green (HRP-RBG) screening system. We built up a mutant library to the order of 10(4). Two rounds of EP-PCR and HRP-RBG screening were used to obtain three optimum mutant strains A1773, A1476 and A2863. We found that mutant A1773 had upper temperature tolerance of 70 degrees C and that its enzyme activity was 6.5 times higher than that of the parent strain. Mutant strains A1476 worked well at pH 4.0 and its enzyme activity was 21 times higher than that of the parent strain. Mutant A2863 worked well at pH 4.0 and pH 7.5, and its enzyme activity was 12.6 times higher than that of the parent strain. With DNA sequencing we found that mutant A1773 revealed two amino acid substitutions, Glu127Lys and Gln613Arg. Mutant A1476 revealed four amino acid substitutions: Ser46Pro, Lys221Gln, Ile307Leu and Asn471lle. Mutant A2863 revealed four amino acid substitutions: Gly73Ser, Ile307Leu, Va1596Ala and Gln613Arg. The results provided a useful illustration for the deep understanding of the relationship between the function and structure of aflatoxin detoxifzyme.
Aflatoxin B1
;
antagonists & inhibitors
;
chemistry
;
Amino Acid Substitution
;
Directed Molecular Evolution
;
Enzyme Activation
;
Enzyme Stability
;
Multienzyme Complexes
;
genetics
;
metabolism
;
Mutant Proteins
;
genetics
;
metabolism
;
Point Mutation
;
Polymerase Chain Reaction
;
methods
;
Protein Engineering
7.Improving ethanol tolerance of Saccharomyces cerevisiae industrial strain by directed evolution of SPT3.
Xinqing ZHAO ; Rujiao JIANG ; Ning LI ; Qing YANG ; Fengwu BAI
Chinese Journal of Biotechnology 2010;26(2):159-164
Directed evolution of transcription factors can be employed to effectively improve the phenotypes which are controlled by multiple genetic loci. In this study, we used error-prone PCR for the directed evolution of SPT3, which is the component of yeast Spt-Ada-Gcn5-acetyltransferase (SAGA) complex responsible for the transcription of stress-related genes, and studied its effect on the improvement of ethanol tolerance. Mutant library was constructed by ligating the error-prone PCR products with a modified pYES2.0 plasmid, and the expression plasmids were subsequently transformed to yeast industrial strain Saccharomyces cerevisiae 4126. One mutant strain M25 showing superior growth in presence of 10% ethanol was selected. M25 produced 11.7% more ethanol than the control strain harboring the empty vector when 125 g/L glucose was used as substrate. This study revealed that SPT3 is an important transcription factor for the metabolic engineering of yeast ethanol tolerance.
Directed Molecular Evolution
;
methods
;
Drug Resistance, Fungal
;
Drug Tolerance
;
Ethanol
;
metabolism
;
pharmacology
;
Industrial Microbiology
;
methods
;
Saccharomyces cerevisiae
;
drug effects
;
genetics
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
genetics
;
Trans-Activators
;
genetics
;
Transcription Factors
;
genetics
8.Directed evolution by error-prone PCR of Armillariella tabescens MAN47 beta-mannanase gene toward enhanced thermal resistance.
Xiaohui LÜ ; Yadong HU ; Fengjuan HU ; Daling LIU ; Dongsheng YAO
Chinese Journal of Biotechnology 2009;25(12):1900-1906
Firstly, We used error-prone PCR to induce mutations on Armillariella tabescens MAN47 beta-mannanase gene, Secondly, we cloned the mutated fragments into secreted expression vector pYCalpha, Then the recombinant plasmids were transformed into Saccharomyces cerevisiae BJ5465 after amplified and extracted in DH5alpha cells. Through three cycles of error-prone PCR we built a mutant database, Then we screened one optimum (named M262) from about 104 mutants. The evoluted MAN47 beta-mannanase displayed both higher thermal stability and activity than wide type. The evoluted enzyme M262 retained high activity after treatment at 80 degrees C for 30 min, whereas, the wild type nearly lost activity under this condition. Meanwhile, the activity of M262 can reach to 25 U/mL, which is 4.3 times as wide type under optimum temperature. In addition, pH stability and pH range of evoluted enzyme M262 were both improved compared with wild-type enzyme. The optimum pH was estimated to be similar to that of wild-type enzyme. The sequence comparison illustrated that there were three nucleotide substitutions (T343A/C827T/T1139C) which carried corresponding amino acid changes (Ser115Thr/Thr276Met/Val380Ala). According to homologous modeling by SWISS-MODEL Repository, three mutated amino acids located at the sixth amino acid of the fourth beta-sheet, the first amino acid of the sixth alpha-helix, the turn between the tenth and eleventh beta-sheet, respectively.
Armillaria
;
classification
;
enzymology
;
genetics
;
Directed Molecular Evolution
;
Enzyme Stability
;
Escherichia coli
;
enzymology
;
genetics
;
Hot Temperature
;
Mutant Proteins
;
genetics
;
metabolism
;
Point Mutation
;
Polymerase Chain Reaction
;
methods
;
Protein Engineering
;
Recombinant Proteins
;
genetics
;
metabolism
;
Saccharomyces cerevisiae
;
enzymology
;
genetics
;
beta-Mannosidase
;
chemistry
;
genetics
;
metabolism
9.DNA-EGS1386 in cells induced RNase P inhibits the expression of human cytomegalovirus UL49 gene.
Yanwei CUI ; Zhifeng ZENG ; Hongjian LI ; Yueqin LI ; Qi ZHOU ; Dan YANG ; Yi ZOU ; Guang YANG ; Tianhong ZHOU
Chinese Journal of Biotechnology 2009;25(11):1690-1696
External Guide Sequences (EGSs) represents a novel nucleic acid based gene interference approach to modulate gene expression. They are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. DNA-based EGS1386 with a size of 12 nt was chemically synthesized to target the mRNA coding for the UL49 gene of human cytomegalovirus (HCMV). The DNA-based EGS1386 molecule efficiently directed human RNase P to cleave the target mRNA sequence in vitro. A reduction of more than 50% in the levels of UL49 expression was observed in human cells treated with the DNA-based EGS1386 targeted UL49 assayed by fluorescent quantization PCR and Western blotting. This results showed that the DNA-EGS1386 can effectively guide the RNase P cut the target mRNA. Therefore, DNA-EGS can develop into a new gene silencing technology and potential of the anti-viral reagents.
Base Sequence
;
Cytomegalovirus
;
drug effects
;
genetics
;
metabolism
;
Cytomegalovirus Infections
;
enzymology
;
virology
;
DNA, Viral
;
genetics
;
Directed Molecular Evolution
;
methods
;
Gene Expression Regulation, Viral
;
Humans
;
Nucleic Acid Conformation
;
Oligodeoxyribonucleotides
;
genetics
;
pharmacology
;
RNA, Guide
;
chemistry
;
pharmacology
;
RNA, Messenger
;
genetics
;
metabolism
;
Ribonuclease P
;
genetics
;
metabolism
;
Viral Structural Proteins
;
genetics
;
metabolism
10.Directed evolution of promoter and cellular transcription machinery and its application in microbial metabolic engineering--a review.
Xinqing ZHAO ; Rujiao JIANG ; Fengwu BAI
Chinese Journal of Biotechnology 2009;25(9):1312-1315
Directed evolution, which is also called molecular evolution, or artificial evolution, combines random mutagenesis and directed selection. In previous studies, it has been extensively applied for the improvement of enzyme catalytic properties and stability, as well as the expanding of substrate specificity. In recent years, directed evolution was also employed in metabolic engineering of promoters for improving their strength and function, and the engineering of global transcription machinery. These techniques contribute to breeding more tolerant strains against environmental stress, as well as strains with improved fermentation efficiency. In this article, we reviewed the applications of directed evolution in the metabolic engineering of promoters and global transcription machinery. These techniques enabled fine-tuning of gene expression and simultaneous alternation of multiple gene transcription inside the cells, and thus are powerful new tools for metabolic engineering.
Directed Molecular Evolution
;
Genetic Engineering
;
Industrial Microbiology
;
methods
;
Metabolism
;
Promoter Regions, Genetic
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
Transcription, Genetic
;
genetics

Result Analysis
Print
Save
E-mail