1.Gene Mutation Types of Thalassemia in Chongzuo Childbearing-age Population of Guangxi Zhuang Autonomous Region of China.
Dong-Ming LI ; Xiu-Ning HUANG ; Huan ZHAO ; Xiang CHEN ; Wan-Wei YANG ; Zhen-Ren PENG ; Li-Fang LIANG ; Bi-Yan CHEN ; Sheng HE
Journal of Experimental Hematology 2023;31(6):1804-1810
OBJECTIVE:
To investigate the gene mutation and genotype distribution of thalassemia in the population of childbearing age in Chongzuo area of Guangxi.
METHODS:
Six α-thalassemia and 17 β-thalassemia gene mutations common in Chinese were detected by gap-polymerase chain reaction (gap-PCR) combined with agarose gel eletrophoresis and reserve dot bolt hybridization in 29 266 cases of child-bearing age suspected of thalassemia.
RESULTS:
A total of 19 128 (65.36%) cases were identified with thalassemia. The detection rate of α-thalassemia, β-thalassemia and α-combining β-thalassemia was 45.25% (13 242/29 266), 15.47% (4 526/29 266) and 4.65% (1 360/29 266), respectively. A total carrying rate of 8 kinds of α-thalassemia gene mutations was 26.74% (15 649/58 532), including 12.51% for --SEA, followed by 5.70% for -α3.7, and 0.24% for --Thai. Among 32 α-thalassemia genotypes, the most common five were --SEA/αα, -α3.7/αα, αCSα/αα, -α4.2/αα and αWSα/αα, accounting for 47.27%, 18.31%, 8.56%, 8.52% and 7.91%, respectively, as well as 0.97% for --Thai/αα. A total carrying rate of 13 kinds of β-thalassemia gene mutations was 10.07% (5 897/58 532), including 3.63% for CD41-42, followed by 2.55% for CD17, and 0.003% for -50 (G>A). Among 17 β-thalassemia genotypes, the most common six were CD41-42/N, CD17/N, CD71-72/N, CD26/N, 28/N and IVSI-1/N, accounting for 36.15%, 25.81%, 9.43%, 8.18%, 8.09% and 7.75%. The homozygous genotype CD26/CD26 [hemoglobin (Hb): 121 g/L] and -28/-28 (Hb: 56 g/L) were respectively detected in one case, and double heterozygous genotype were detected in 5 cases, including 3 cases of CD41-42/CD26 (Hb: 41 g/L, 51 g/L, 63 g/L, respectively), 1 case of -28/IVSI-1 (Hb: 53 g/L), and 1 case of CD71-72/CD26 (Hb: 89 g/L), in which patients with moderate or severe anemia had a history of blood transfusion. Among 104 α-combining β-thalassemia genotypes, the most common were --SEA/αα, -α3.7/αα combining CD41-42/N and --SEA/αα combining CD17/N, accounting for 12.13%, 9.63% and 9.26%, respectively. In addition, 1 case of --SEA/-α3.7 combining -28/IVSI-1 (Hb: 83 g/L) and 1 case of -α3.7/αα combining CD41-42/ CD41-42 (Hb: 110 g/L) were detected without history of blood transfusion, while 1 case of αWSα/αα combining CD41-42/CD17 (Hb: 79 g/L) and 1 case of --SEA/αα combining CD17/-28 (Hb: 46 g/L) were detected with history.
CONCLUSIONS
The detection rate of thalassemia genes is high and the mutations are diverse in the population of childbearing age in Chongzuo area of Guangxi. The common deletion genotype is --SEA/αα in α-thalassemia and CD41-42/N in β-thalassemia, and deletion genotype --Thai is not rare. There is a certain incidence of intermediate and severe β-thalassemia, and most patients require transfusion therapy. The results are beneficial for genetic consultation and intervention of thalassemia.
Humans
;
beta-Thalassemia/genetics*
;
alpha-Thalassemia/genetics*
;
Dipeptidyl Peptidase 4/genetics*
;
China/epidemiology*
;
Genotype
;
Mutation
2.In Silico profiling of the Angiotensin converting enzyme binding affinities, toxicity and Pharmacokinetics of compounds from the nuts of Areca Catechu, Linn. and its bioisosteres
Kenneth C. Ezeuba ; Joanna V. Toralba ; Junie B. Billones
Philippine Journal of Health Research and Development 2023;27(4):78-93
Background:
Hypertension is a worldwide epidemic that has been recognized as the most leading global risk for mortality, with its prevalence associated with increased blood pressure, concomitant risks of cardiovascular and kidney diseases, and major commonality in individuals advanced in age. With the current treatment options for hypertension management, there is still a need to develop therapies that directly target receptors that aid in hypertension treatment.
Methodology:
The study focused on the in-silico profiling of the reported compounds from Areca catechu L. (fam. Arecaceae) towards the n-domain and c-domain angiotensin converting enzyme (ACE) receptor models. Bioisosteric replacement was used to create bioisosteres investigated for similar binding affinity.
Results:
Some A. catechu compounds exhibited favorable binding energies towards the n- and c-domain receptor models of ACE, binding in the same ACE ligand binding site as lisinopril, benazepril, and sampatrilat via similar interactions and amino acid residues. The majority of A. catechu compounds with favorable ACE binding energies belong to the phytochemical classes of flavonoids, polyphenols and phenolics, glycosides, and steroids. After in silico toxicity and pharmacokinetic profiling, the bioisosteres Leuco-DM02-39, Leuco-DM02-66, Leuco-DM05-60, Querc-DM09-63, and Querc-DM14-31 with binding energies higher than their parent compounds and comparable to lisinopril, benazepril, and sampatrilat were deemed the best.
Conclusion
A. catechu compounds have the potential to target ACE n-domain and c-domain receptor models. Three leucocyanidin and two quercetin bioisosteres exhibited favorable binding to the n-domain and c-domain ACE receptor models and could be further optimized to derive a promising antihypertensive agent through ACE inhibition.
Peptidyl-Dipeptidase A
;
Areca
;
Hypertension
3.Myocardial injury caused by infection of coronavirus.
Yanxia HUANG ; Mei MENG ; Dechang CHEN
Chinese Critical Care Medicine 2023;35(6):665-668
Coronaviruses are single-stranded RNA viruses that are common in animals. In the past 20 years, there have been three large-scale epidemics of coronaviruses, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease (COVID). Heart disease is an independent risk factor for severe COVID. At the same time, SARS-CoV-2 infection is often complicated with myocardial injury, which is closely related to poor prognosis. The receptors of SARS coronavirus are angiotensin-converting enzyme 2 (ACE2) and CD209L, among which ACE2 is the main receptor, and ACE2 is abundant in the heart. The receptor of MERS-coronavirus is dipeptide peptidase 4 (DPP4), which is not expressed in myocardial cells, but existed in vascular endothelial cells and blood. These receptors are important factors for the myocardial injury caused by coronavirus infection.
Animals
;
COVID-19
;
Angiotensin-Converting Enzyme 2
;
SARS-CoV-2
;
Endothelial Cells
;
Peptidyl-Dipeptidase A/genetics*
4.Influence of the severity and treatment of allergic rhinitis and asthma on SARS-CoV-2 infection.
Chinese Journal of Preventive Medicine 2023;57(8):1171-1175
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected 660 million people and resulted in 6.7 million deaths. At present, a variety of risk factors related to the severity of COVID-19 have been identified, but whether allergic rhinitis and asthma will affect SARS-CoV-2 infection remains controversial. In general, there is no sufficient evidence to support that allergic rhinitis or asthma is a risk factor for increasing the rate of SARS-CoV-2 infection or aggravating the disease. Some studies even show that atopy may be a protective factor to alleviate SARS-CoV-2 infection, which is related to the decreased expression of angiotensin-converting enzyme 2, the receptor required for SARS-CoV-2 to enter cells, in atopic individuals. This paper reviews the influence of the severity and treatment of allergic rhinitis and asthma on SARS-CoV-2 infection, in order to provide some references for establishing strategies for prevention, risk stratification and treatment of COVID-19.
Humans
;
COVID-19
;
SARS-CoV-2/metabolism*
;
Peptidyl-Dipeptidase A/metabolism*
;
Asthma/therapy*
;
Rhinitis, Allergic
5.Influence of the severity and treatment of allergic rhinitis and asthma on SARS-CoV-2 infection.
Chinese Journal of Preventive Medicine 2023;57(8):1171-1175
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected 660 million people and resulted in 6.7 million deaths. At present, a variety of risk factors related to the severity of COVID-19 have been identified, but whether allergic rhinitis and asthma will affect SARS-CoV-2 infection remains controversial. In general, there is no sufficient evidence to support that allergic rhinitis or asthma is a risk factor for increasing the rate of SARS-CoV-2 infection or aggravating the disease. Some studies even show that atopy may be a protective factor to alleviate SARS-CoV-2 infection, which is related to the decreased expression of angiotensin-converting enzyme 2, the receptor required for SARS-CoV-2 to enter cells, in atopic individuals. This paper reviews the influence of the severity and treatment of allergic rhinitis and asthma on SARS-CoV-2 infection, in order to provide some references for establishing strategies for prevention, risk stratification and treatment of COVID-19.
Humans
;
COVID-19
;
SARS-CoV-2/metabolism*
;
Peptidyl-Dipeptidase A/metabolism*
;
Asthma/therapy*
;
Rhinitis, Allergic
6.SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies: a review.
Yulei CHEN ; Jinjin LIN ; Peiyi ZHENG ; Minjie CAO ; Tengchuan JIN
Chinese Journal of Biotechnology 2022;38(9):3173-3193
Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), with strong contagiousness, high susceptibility and long incubation period. cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain of the viral spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). Here, we briefly reviewed the mechanisms underlying the interaction between SARS-CoV-2 and ACE2, and summarized the latest research progress on SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies, so as to better understand the development process and drug research direction of COVID-19. This review may facilitate understanding the development of neutralizing antibody drugs for emerging infectious diseases, especially for COVID-19.
Angiotensin-Converting Enzyme 2
;
Antibodies, Monoclonal
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19
;
Humans
;
Peptidyl-Dipeptidase A/metabolism*
;
Protein Binding
;
SARS-CoV-2
;
Single-Domain Antibodies
;
Spike Glycoprotein, Coronavirus/metabolism*
7.Investigation on the growth factor regulatory network of dermal fibroblasts in mouse full-thickness skin defect wounds based on single-cell RNA sequencing.
Li Xiang SUN ; Shuai WU ; Xiao Wei ZHANG ; Wen Jie LIU ; Ling Juan ZHANG
Chinese Journal of Burns 2022;38(7):629-639
Objective: To explore the heterogeneity and growth factor regulatory network of dermal fibroblasts (dFbs) in mouse full-thickness skin defect wounds based on single-cell RNA sequencing. Methods: The experimental research methods were adopted. The normal skin tissue from 5 healthy 8-week-old male C57BL/6 mice (the same mouse age, sex, and strain below) was harvested, and the wound tissue of another 5 mice with full-thickness skin defect on the back was harvested on post injury day (PID) 7. The cell suspension was obtained by digesting the tissue with collagenase D and DNase Ⅰ, sequencing library was constructed using 10x Genomics platform, and single-cell RNA sequencing was performed by Illumina Novaseq6000 sequencer. The gene expression matrices of cells in the two kinds of tissue were obtained by analysis of Seurat 3.0 program of software R4.1.1, and two-dimensional tSNE plots classified by cell group, cell source, and gene labeling of major cells in skin were used for visual display. According to the existing literature and the CellMarker database searching, the expression of marker genes in the gene expression matrices of cells in the two kinds of tissue was analyzed, and each cell group was numbered and defined. The gene expression matrices and cell clustering information were introduced into CellChat 1.1.3 program of software R4.1.1 to analyze the intercellular communication in the two kinds of tissue and the intercellular communication involving vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and fibroblast growth factor (FGF) signal pathways in the wound tissue, the relative contribution of each pair of FGF subtypes and FGF receptor (FGFR) subtypes (hereinafter referred to as FGF ligand receptor pairs) to FGF signal network in the two kinds of tissue, and the intercellular communication in the signal pathway of FGF ligand receptor pairs with the top 2 relative contributions in the two kinds of tissue. The normal skin tissue from one healthy mouse was harvested, and the wound tissue of one mouse with full-thickness skin defect on the back was harvested on PID 7. The multiple immunofluorescence staining was performed to detect the expression and distribution of FGF7 protein and its co-localized expression with dipeptidyl peptidase 4 (DPP4), stem cell antigen 1 (SCA1), smooth muscle actin (SMA), and PDGF receptor α (PDGFRα) protein. Results: Both the normal skin tissue of healthy mice and the wound tissue of full-thickness skin defected mice on PID 7 contained 25 cell groups, but the numbers of cells in each cell group between the two kinds of tissue were different. Genes PDGFRα, platelet endothelial cell adhesion molecule 1, lymphatic endothelial hyaluronic acid receptor 1, receptor protein tyrosine phosphatase C, keratin 10, and keratin 79 all had distinct distributions on two-dimensional tSNE plots, indicating specific cell groups respectively. The 25 cell groups were numbered by C0-C24 and divided into 9 dFb subgroups and 16 non-dFb groups. dFb subgroups included C0 as interstitial progenitor cells, C5 as adipose precursor cells, and C13 as contractile muscle cells related fibroblasts, etc. Non-dFb group included C3 as neutrophils, C8 as T cells, and C18 as erythrocytes, etc. Compared with that of the normal skin tissue of healthy mice, the intercellular communication in the wound tissue of full-thickness skin defected mice on PID 7 was more and denser, and the top 3 cell groups in intercellular communication intensity were dFb subgroups C0, C1, and C2, of which all communicated with other cell groups in the wound tissue. In the wound tissue of full-thickness skin defected mice on PID 7, VEGF signals were mainly sent by the dFb subgroup C0 and received by vascular related cell groups C19 and C21, PDGF signals were mainly sent by peripheral cells C14 and received by multiple dFb subgroups, EGF signals were mainly sent by keratinocyte subgroups C9 and C11 and received by the dFb subgroup C0, and the main sender and receiver of FGF signals were the dFb subgroup C6. In the relative contribution rank of FGF ligand receptor pairs to FGF signal network in the normal skin tissue of healthy mice and the wound tissue of full-thickness skin defected mice on PID 7, FGF7-FGFR1 was the top 1, and FGF7-FGFR2 or FGF10-FGFR1 was in the second place, respectively; compared with those in the normal skin tissue, there was more intercellular communication in FGF7-FGFR1 signal pathway, while the intercellular communication in FGF7-FGFR2 and FGF10-FGFR1 signal pathways decreased slightly or did not change significantly in the wound tissue; the intercellular communication in FGF7-FGFR1 signal pathway in the wound tissue was stronger than that in FGF7-FGFR2 or FGF10-FGFR1 signal pathway; in the two kinds of tissue, FGF7 signal was mainly sent by dFb subgroups C0, C1, and C2, and received by dFb subgroups C6 and C7. Compared with that in the normal skin tissue of healthy mouse, the expression of FGF7 protein was higher in the wound tissue of full-thickness skin defected mouse on PID 7; in the normal skin tissue, FGF7 protein was mainly expressed in the skin interstitium and also expressed in the white adipose tissue near the dermis layer; in the two kinds of tissue, FGF7 protein was co-localized with DPP4 and SCA1 proteins and expressed in the skin interstitium, co-localized with PDGFRα protein and expressed in dFbs, but was not co-localized with SMA protein, with more co-localized expression of FGF7 in the wound tissue than that in the normal skin tissue. Conclusions: In the process of wound healing of mouse full-thickness skin defect wound, dFbs are highly heterogeneous, act as potential major secretory or receiving cell populations of a variety of growth factors, and have a close and complex relationship with the growth factor signal pathways. FGF7-FGFR1 signal pathway is the main FGF signal pathway in the process of wound healing, which targets and regulates multiple dFb subgroups.
Animals
;
Dipeptidyl Peptidase 4
;
Epidermal Growth Factor
;
Fibroblasts
;
Imidazoles
;
Ligands
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Receptor, Platelet-Derived Growth Factor alpha
;
Sequence Analysis, RNA
;
Skin Abnormalities
;
Soft Tissue Injuries
;
Spinocerebellar Ataxias
;
Sulfonamides
;
Thiophenes
;
Vascular Endothelial Growth Factor A
8.Degradation of SARS-CoV-2 receptor ACE2 by the E3 ubiquitin ligase Skp2 in lung epithelial cells.
Guizhen WANG ; Qun ZHAO ; Hui ZHANG ; Fan LIANG ; Chen ZHANG ; Jun WANG ; Zhenyin CHEN ; Ran WU ; Hong YU ; Beibei SUN ; Hua GUO ; Ruie FENG ; Kaifeng XU ; Guangbiao ZHOU
Frontiers of Medicine 2021;15(2):252-263
An unexpected observation among the COVID-19 pandemic is that smokers constituted only 1.4%-18.5% of hospitalized adults, calling for an urgent investigation to determine the role of smoking in SARS-CoV-2 infection. Here, we show that cigarette smoke extract (CSE) and carcinogen benzo(a)pyrene (BaP) increase ACE2 mRNA but trigger ACE2 protein catabolism. BaP induces an aryl hydrocarbon receptor (AhR)-dependent upregulation of the ubiquitin E3 ligase Skp2 for ACE2 ubiquitination. ACE2 in lung tissues of non-smokers is higher than in smokers, consistent with the findings that tobacco carcinogens downregulate ACE2 in mice. Tobacco carcinogens inhibit SARS-CoV-2 spike protein pseudovirions infection of the cells. Given that tobacco smoke accounts for 8 million deaths including 2.1 million cancer deaths annually and Skp2 is an oncoprotein, tobacco use should not be recommended and cessation plan should be prepared for smokers in COVID-19 pandemic.
Adult
;
Animals
;
COVID-19
;
Epithelial Cells
;
Humans
;
Lung
;
Mice
;
Pandemics
;
Peptidyl-Dipeptidase A
;
SARS-CoV-2
;
Spike Glycoprotein, Coronavirus
;
Ubiquitin-Protein Ligases/genetics*
9.Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids.
Bing ZHAO ; Chao NI ; Ran GAO ; Yuyan WANG ; Li YANG ; Jinsong WEI ; Ting LV ; Jianqing LIANG ; Qisheng ZHANG ; Wei XU ; Youhua XIE ; Xiaoyue WANG ; Zhenghong YUAN ; Junbo LIANG ; Rong ZHANG ; Xinhua LIN
Protein & Cell 2020;11(10):771-775
Betacoronavirus
;
isolation & purification
;
pathogenicity
;
Bile Acids and Salts
;
metabolism
;
Bile Ducts, Intrahepatic
;
pathology
;
virology
;
Cell Culture Techniques
;
Coronavirus Infections
;
complications
;
pathology
;
Cytokine Release Syndrome
;
etiology
;
physiopathology
;
Cytopathogenic Effect, Viral
;
Epithelial Cells
;
enzymology
;
pathology
;
virology
;
Humans
;
Hyperbilirubinemia
;
etiology
;
Liver
;
pathology
;
Organoids
;
pathology
;
virology
;
Pandemics
;
Peptidyl-Dipeptidase A
;
analysis
;
Pneumonia, Viral
;
complications
;
pathology
;
Receptors, Virus
;
analysis
;
Serine Endopeptidases
;
analysis
;
Viral Load
10.Research progress in nervous system damage caused by SARS
Peng HUANG ; Li TANG ; Yi REN ; Liqun LIU
Journal of Central South University(Medical Sciences) 2020;45(10):1247-1254
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major outbreak in the world. SARS-CoV-2 infection can not only involve in the respiratory system, but also cause severe nervous system damage. Studies have shown that SRAS-CoV-2 can invade the nervous system through hematogenous and transneuronal pathways, and may cause nervous system damage in patients with COVID-19 by inhibiting cellular immunity, hypoxemia, inflammation, inducing neuronal degeneration and apoptosis, and angiotensin converting enzyme 2 (ACE2) mechanism. It can lead to intracranial infection, toxic encephalopathy, acute cerebrovascular disease, muscle damage, peripheral nervous system injury, acute myelitis, demyelination disease or other nervous system diseases.
Betacoronavirus
;
COVID-19
;
Coronavirus Infections/epidemiology*
;
Humans
;
Pandemics
;
Peptidyl-Dipeptidase A
;
Pneumonia, Viral/epidemiology*
;
Research
;
SARS-CoV-2


Result Analysis
Print
Save
E-mail