1.Efficacy Connotation and Mechanisms of Shudi Qiangjin Pills Against Steroid-induced Osteonecrosis of Femoral Head Based on "Disease-Syndrome-Formula" Association Network
Zhijian CHEN ; Suya ZHANG ; Longlong DING ; Guixin ZHANG ; Bo LIU ; Baohong MI ; Yanqiong ZHANG ; Na LIN ; Weiheng CHEN ; Chunzhu GONG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):88-99
ObjectiveTo elucidate the efficacy connotation of Shudi Qiangjin pills (SQP) against liver and kidney deficiency in steroid-induced osteonecrosis of femoral head (SONFH) from the perspective of the "disease-syndrome-formula" association and to clarify the underlying mechanisms based on in vivo and in vitro experiment validation. MethodsThe chemical components and the corresponding putative targets of SQP were collected from the Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP) v2.0, the Encyclopedia of Traditional Chinese Medicine (ETCM) v2.0, and HERB databases. The SONFH-related genes were identified based on the differential expression profiles of peripheral blood of patients with SONFH compared to the healthy volunteers, and the disease phenotype-related targets were collected from the TCMIP v2.0 database. Then, the interaction network of "SONFH-related genes and candidate targets of SQP" was constructed based on "gene-gene interaction information", and the major network targets were screened by calculating the topological characteristic values of the network followed by the functional mining according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the SoFDA database. After that, the SONFH rat model was prepared by lipopolysaccharide combined with methylprednisolone injection, and 2.5, 5, 7.5 g·kg-1 SQP (once per day, equivalent to 1, 2, and 3 times the clinical equivalent dose, respectively) or 7.3×10-3 g·kg-1 of alendronate sodium (ALS, once per week, equivalent to the clinical equivalent dose) was given for 8 weeks. The effect characteristics of SQP and ALS in the treatment of SONFH were evaluated by micro-computed tomography scanning, hematoxylin and eosin staining, alkaline phosphatase (ALP) staining, immunohistochemical staining, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)staining, and a comparative efficacy analysis was conducted with ALS. In addition, SONFH cell models were prepared by dexamethasone stimulation of osteoblasts, and the intervention was carried out with the medicated serum of SQP at the aforementioned three doses. Cell counting kit-8, ALP staining, ALP activity assay, alizarin red staining, and flow cytometry were employed to investigate the regulatory effect of SQP on osteoblasts. The expression levels of osteogenesis-related proteins and key factors of the target signaling axis were detected by quantitative real-time polymerase chain reaction and Western blot. ResultsThe network analysis results demonstrated that the candidate targets of SQP primarily exerted their therapeutic effects through key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt), lipid metabolism and atherosclerosis, prolactin, chemokines, and neurotrophic factors pathways. These pathways were significantly involved in critical biological processes such as muscle and bone metabolism and the regulation of the "neuro-endocrine-immune" network, thereby addressing both modern medical symptoms (e.g., delayed skeletal maturation and recurrent fractures) and traditional Chinese medicine (TCM) symptoms (e.g., fatigue, aversion to cold, cold limbs, and pain in the limbs and joints in patients with SONFH characterized by liver and kidney deficiency syndrome. Among these pathways, the PI3K/Akt signaling pathway exhibited the highest degree of enrichment. The in vivo experimental results demonstrated that starting from the 4th week after modeling, the modeling group exhibited a significant reduction in body weight compared to the control group (P<0.05). After six weeks of treatment, all dosage groups of SQP showed significantly higher body weights compared to the model group (P<0.01). Compared with the normal group, the model group exhibited significant decreases in bone mineral density (BMD), bone volume fraction (BV/TV), trabecular number (Tb.N), osteocalcin (OCN), alkaline phosphatase (ALP) levels in femoral head tissue, and serum bone-specific alkaline phosphatase (BALP) (P<0.01), along with significant increases in trabecular separation (Tb.Sp), empty lacunae rate in tissue, and apoptosis rate (P<0.01). In comparison to the model group, the SQP intervention groups showed significant improvements in BMD, BV/TV and Tb.N (P<0.01), significant reductions in Tb.Sp, empty lacunae rate and apoptosis rate (P<0.05), and significant increases in protein levels of OCN and ALP as well as BALP content (P<0.05). The in vitro experimental results revealed that all dosage groups of SQP medicated serum showed no toxic effects on osteoblast. Compared with the normal group, the model group displayed significant suppression of osteoblast proliferation activity, ALP activity, and calcified nodule formation rate (P<0.01), significant decreases in mRNA transcription levels of OCN and Runt-related transcription factor 2 (RUNX2) (P<0.01), significant reductions in protein content of osteopontin (OPN), typeⅠ collagen (ColⅠ)A1, B-cell lymphoma-2 (Bcl-2), PI3K, and phosphorylated (p)-Akt (P<0.01), and a significant increase in apoptosis rate (P<0.01). Compared with the model group, the SQP medicated serum intervention groups exhibited significant increases in proliferation activity, ALP activity, calcified nodule formation rate, mRNA transcription levels of OCN and RUNX2, and protein content of OPN, ColⅠA1, Bcl-2, PI3K, and p-Akt (P<0.05), along with a significant decrease in apoptosis rate (P<0.01). ConclusionSQP can effectively reduce the disease severity of SONFH with liver and kidney deficiency syndrome and improve bone microstructure, with the therapeutic effects exhibiting a dose-dependent manner. The mechanism may be related to its regulation of key processes such as muscle and bone metabolism and the correction of imbalances in the "neuro-endocrine-immune" network, thereby promoting osteoblast differentiation and inhibiting osteoblast apoptosis. The PI3K/Akt signaling axis is likely one of the key pathways through which this formula exerts its effects.
2.Current Status and Strategies of Integrated Traditional Chinese and Western Medicine in the Treatment of Helicobacter pylori Infection
Xuezhi ZHANG ; Xia DING ; Zhen LIU ; Hui YE ; Xiaofen JIA ; Hong CHENG ; Zhenyu WU ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):111-116
This paper systematically reviews the current status of integrated traditional Chinese and western medicine in the treatment of Helicobacter pylori (Hp) infection, as well as recent progress in clinical and basic research both in China and internationally. It summarizes the advantages of traditional Chinese medicine (TCM) in Hp infection management, including improving Hp eradication rates, enhancing antibiotic sensitivity, reducing antimicrobial resistance, decreasing drug-related adverse effects, and ameliorating gastric mucosal lesions. These advantages are particularly evident in patients who are intolerant to bismuth-containing regimens, those with refractory Hp infection, and individuals with precancerous gastric lesions. An integrated, whole-process management approach and individualized, staged comprehensive treatment strategies combining TCM and western medicine are proposed for Hp infection. Future prevention and control of Hp infection should adopt an integrative Chinese-western medical strategy, emphasizing prevention, strengthening primary care, implementing proactive long-term monitoring, optimizing screening strategies, and advancing the development of novel technologies and mechanistic studies of Chinese herbal interventions. These efforts aim to provide a theoretical basis and practical pathways for the establishment and improvement of Hp infection prevention and control systems.
3.Study on the new workflow of PIVAS based on intelligent auxiliary devices
Haiwen DING ; Sheng LIU ; Zhaolin CHEN ; Liqin TANG ; Tong TONG
China Pharmacy 2026;37(1):99-104
OBJECTIVE To build a new workflow of pharmacy intravenous admixture services (PIVAS), effectively connect intelligent equipment, and promote the intelligent development of PIVAS. METHODS Based on intelligent auxiliary equipment, PIVAS workflow was optimized, and a process-oriented model was established. This model integrated intelligent prescription review (automatic prescription review+manual intervention mode), intelligent labeling, intelligent allocation, intelligent sorting, and finished infusion quality inspection system. Furthermore, an assessment was conducted to examine unreasonable medical order rate of intelligent prescription review, the working efficiency and error rate of intelligent labeling machine and intelligent sorting machine, and the dispensing efficiency and accuracy of intelligent dispensing robot. RESULTS Under the intelligent prescription review mode, the rate of unreasonable medical orders decreased from 0.157% to 0.050% (P<0.05); automatic labeling efficiency reached 21.7 sheets/min, surpassing the manual labeling efficiency of 13.8 sheets/min (P<0.05), and the daily labeling error rate decreased from 6.1‰ to 2.5‰ (P<0.05). Simultaneously operating two dispensing robots significantly improved the efficiency of batch dispensing and reduced the residual amount of liquid medicine (P<0.05); additionally, a quality testing system for finished infusion was established, involving appearance, Tyndall effect, insoluble particles, turbidity, absorbance, pH and osmotic pressure, to ensure the quality of finished infusion and reduce the risk of infusion. CONCLUSIONS The new process of PIVAS connected with intelligent devices in our hospital can improve work efficiency, reduce dispensing errors, ensure the quality of finished infusion, and improve the level of pharmaceutical care.
4.Traditional Chinese Medicine Treats Esophageal Cancer via PI3K/Akt Signaling Pathway: A Review
Wei GUO ; Chen PENG ; Yikun WANG ; Zixuan YU ; Jintao LIU ; Jing DING ; Yijing LI ; Hongxin SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):302-311
Esophageal cancer (EC) is a highly prevalent malignant tumor in China. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, as one of the key oncogenic pathways, can promote the cell cycle progression, proliferation, migration, and invasion, induce chemoresistance, and inhibit apoptosis and autophagy of EC cells. Traditional Chinese medicine (TCM), with the advantages of targeting multiple points with multiple components to delay cancer progression, can target the PI3K/Akt signaling pathway for EC treatment. This article preliminarily discusses the molecular mechanism and role of the PI3K/Akt signaling pathway in EC and elaborates on the specific targets and efficacy of TCM in treating EC through intervention in the PI3K/Akt signaling pathway in the past five years. TCM materials and extracts inhibiting the PI3K/Akt signaling pathway in EC include Borneolum, spore powder of Ganoderma lucidum without spore coat, extract of Celastrus orbiculatus, root extract of Taraxacum, and Bruceae Fructus oil emulsion. TCM active ingredients exerting the effect include flavonoids, terpenoids, saponins, phenols, polysaccharides, alkaloids, and other compounds. TCM compound prescriptions with such effect include Qige San, Huqi San, Xuanfu Daizhetang, Tongyoutang and its decomposed prescriptions, Liujunzi Tang, and Xishenzhi Formula. In addition, TCM injections such as Compound Kushen Injection and Kang'ai injection also inhibit the PI3K/Akt signaling pathway in EC. This paper summarizes the role of the PI3K/Akt signaling pathway in EC and the TCM interventions, aiming to provide reference for the research and clinical application of new drugs for EC.
5.Effects of different exercise interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats
Shujuan HU ; Ping CHENG ; Xiao ZHANG ; Yiting DING ; Xuan LIU ; Rui PU ; Xianwang WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):269-278
BACKGROUND:Carboxylesterase 1 and inflammatory factors play a crucial role in regulating lipid metabolism and glucose homeostasis.However,the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats remain to be revealed. OBJECTIVE:To investigate the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats. METHODS:Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into normal control group(n=12)and modeling group(n=20)after 1 week of adaptive feeding.Rat models of type 2 diabetes mellitus were prepared by high-fat diet and single injection of streptozotocin.After successful modeling,the rats were randomly divided into diabetic control group(n=6),moderate-intensity exercise group(n=6)and high-intensity intermittent exercise group(n=6).The latter two groups were subjected to treadmill training at corresponding intensities,once a day,50 minutes each,and 5 days per week.Exercise intervention in each group was carried out for 6 weeks.After the intervention,ELISA was used to detect blood glucose and blood lipids of rats.The morphological changes of skeletal muscle were observed by hematoxylin-eosin staining.The mRNA expression levels of carboxylesterase 1 and inflammatory cytokines were detected by real-time quantitative PCR.The protein expression levels of carboxylesterase 1 and inflammatory cytokines were detected by western blot and immunofluorescence. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,insulin resistance index in the diabetic control group were significantly increased(P<0.01),insulin activity was decreased(P<0.05),and the mRNA and protein levels of carboxylesterase 1,never in mitosis gene A related kinase 7(NEK7)and interleukin 18 in skeletal muscle tissue were upregulated(P<0.05).Compared with the diabetic control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,and insulin resistance index in the moderate-intensity exercise group and high-intensity intermittent exercise group were down-regulated(P<0.05),and insulin activity was increased(P<0.05).Moreover,compared with the diabetic control group,the mRNA level of NEK7 and the protein levels of carboxylesterase 1,NEK7 and interleukin 18 in skeletal muscle were decreased in the moderate-intensity exercise group(P<0.05),while the mRNA levels of carboxylesterase 1,NEK7,NOD-like receptor heat protein domain associated protein 3 and interleukin 18 and the protein levels of carboxylesterase 1 and interleukin 18 in skeletal muscle were downregulated in the high-intensity intermittent exercise group(P<0.05).Hematoxylin-eosin staining showed that compared with the diabetic control group,the cavities of myofibers in the moderate-intensity exercise group became smaller,the number of internal cavities was reduced,and the cellular structure tended to be more intact;the myocytes of rats in the high-intensity intermittent exercise group were loosely arranged,with irregular tissue shape and increased cavities in myofibers.To conclude,both moderate-intensity exercise and high-intensity intermittent exercise can reduce blood glucose,lipid,insulin resistance and carboxylesterase 1 levels in type 2 diabetic rats.Moderate-intensity exercise can significantly reduce the expression level of NEK7 protein in skeletal muscle,while high-intensity intermittent exercise can significantly reduce the expression level of interleukin 18 protein in skeletal muscle.In addition,the level of carboxylesterase 1 is closely related to the levels of NEK7 and interleukin 18.
6.Gradient artificial bone repair scaffold regulates skeletal system tissue repair and regeneration
Yu ZHANG ; Ruian XU ; Lei FANG ; Longfei LI ; Shuyan LIU ; Lingxue DING ; Yuexi WANG ; Ziyan GUO ; Feng TIAN ; Jiajia XUE
Chinese Journal of Tissue Engineering Research 2025;29(4):846-855
BACKGROUND:Gradient artificial bone repair scaffolds can mimic unique anatomical features in musculoskeletal tissues,showing great potential for repairing injured musculoskeletal tissues. OBJECTIVE:To review the latest research advances in gradient artificial bone repair scaffolds for tissue engineering in the musculoskeletal system and describe their advantages and fabrication strategies. METHODS:The first author of the article searched the Web of Science and PubMed databases for articles published from 2000 to 2023 with search terms"gradient,bone regeneration,scaffold".Finally,76 papers were analyzed and summarized after the screening. RESULTS AND CONCLUSION:(1)As an important means of efficient and high-quality repair of skeletal system tissues,gradient artificial bone repair scaffolds are currently designed bionically for the natural gradient characteristics of bone tissue,bone-cartilage,and tendon-bone tissue.These scaffolds can mimic the extracellular matrix of native tissues to a certain extent in terms of structure and composition,thus promoting cell adhesion,migration,proliferation,differentiation,and regenerative recovery of damaged tissues to their native state.(2)Advanced manufacturing technology provides more possibilities for gradient artificial bone repair scaffold preparation:Gradient electrospun fiber scaffolds constructed by spatially differentiated fiber arrangement and loading of biologically active substances have been developed;gradient 3D printed scaffolds fabricated by layered stacking,graded porosity,and bio-3D printing technology;gradient hydrogel scaffolds fabricated by in-situ layered injections,simple layer-by-layer stacking,and freeze-drying method;and in addition,there are also scaffolds made by other modalities or multi-method coupling.These scaffolds have demonstrated good biocompatibility in vitro experiments,were able to accelerate tissue regeneration in small animal tests,and were observed to have significantly improved histological structure.(3)The currently developed gradient artificial bone repair scaffolds have problems such as mismatch of gradient scales,unclear material-tissue interactions,and side effects caused by degradation products,which need to be further optimized by combining the strengths of related disciplines and clinical needs in the future.
7.Constructing rabbit intervertebral disc degeneration models by different methods under X-ray guidance:a comparative study
Zhili DING ; Jie HUANG ; Qiang JIANG ; Tusheng LI ; Jiang LIU ; Yu DING
Chinese Journal of Tissue Engineering Research 2025;29(5):995-1002
BACKGROUND:Scholars at home and abroad consider New Zealand rabbits to be an ideal model animal because of the similar anatomical morphology of the lumbar spine to that of the human lumbar spine.There is a lack of systematic comparison of different ways to establish rabbit intervertebral disc degeneration models under X-ray guidance. OBJECTIVE:To establish a rabbit model of lumbar disc degeneration using X-ray guided acupuncture,end-plate injection and combined method,and to compare the modeling effects of these three methods. METHODS:Eighteen 6-month-old New Zealand white rabbits were randomly selected and divided into four groups:acupuncture group,endplate injection group,combined group and blank control group.In the acupuncture group,three consecutive segments of the intervertebral discs(L2/3,L3/4,L4/5)were needled and modeled;in the endplate injection group,50 μL of anhydrous ethanol was injected at a single point on the endplates of the three consecutive segmental discs;in the combined group,three consecutive segmental intervertebral discs were needled and injected with 50 μL of anhydrous ethanol at four azimuthal points on the endplates of the corresponding segmental discs;and the blank control group received no interventions.X-ray examination was performed to measure the disc height index at 2,4,and 8 weeks after surgery.The intervertebral disc tissues were then taken for anatomical observation and pathological examination. RESULTS AND CONCLUSION:(1)Anatomical examination showed that fibrous annulus rupture,nucleus pulposus degeneration,and total disc structure disorder were the main manifestation in the acupuncture group,endplate injection group,and combined group,respectively.(2)X-ray examination showed that the disc height index showed the most obvious reduction in the acupuncture group at 2 weeks after operation,significant reductions in the endplate injection group at 2 and 4 weeks after operation,and significant reductions in the combined group at 2,4,and 8 weeks after operation.(3)Pathological examination showed that the fibrous ring structure was damaged and the inner annulus fibrosus protruded inward in the acupuncture group;endplate fissure,disordered arrangement and nucleus loss were observed in the endplate injection group;total disc structure disorder with the nucleus pulposus losing water and shrinking and no obvious border with the broken annulus fibrosus was found in the combined group.To conclude,acupuncture,endplate injection and the modified endplate injection method can establish the rabbit intervertebral disc degeneration model.Compared with the single method,the modified endplate injection method can greatly accelerate and aggravate the degeneration of the intervertebral disc,and can effectively shorten the experiment period.
8.Hot issues and application prospects of small molecule drugs in treatment of osteoarthritis
Shuai YU ; Jiawei LIU ; Bin ZHU ; Tan PAN ; Xinglong LI ; Guangfeng SUN ; Haiyang YU ; Ya DING ; Hongliang WANG
Chinese Journal of Tissue Engineering Research 2025;29(9):1913-1922
BACKGROUND:Various proteins,signaling pathways,and inflammatory mediators are involved in the pathophysiological process of osteoarthritis.The development of small molecule drugs targeting these proteins,signaling pathways,and inflammatory mediators can effectively delay the progression of osteoarthritis and ameliorate its clinical manifestations. OBJECTIVE:To review the research progress of small molecule drugs in the treatment of osteoarthritis based on the pathogenesis of osteoarthritis. METHODS:PubMed,CNKI,and WanFang databases were searched with English search terms"osteoarthritis,arthritis,osteoarthrosis,degenerative,arthritides,deformans,small molecule drugs,small molecule inhibitors,small molecule agents"and Chinese search terms"osteoarthritis,small molecule drugs,small molecule inhibitors."A total of 68 articles were included for review according to the inclusion and exclusion criteria. RESULTS AND CONCLUSION:(1)Currently,studies concerning the pathogenesis of osteoarthritis remain unclear.The occurrence and development of osteoarthritis are strongly associated with proteins,cytokines,and signal transduction pathways,so its therapeutic mechanism is relatively complex.Currently,targeting proteins,cytokines,and signal transduction pathways related to osteoarthritis with small molecule drugs has become a major research focus.(2)Small molecule drugs frequently possess visible intracellular or extracellular targets and efficacy,containing enhancing cartilage repair,resisting joint degradation,attenuating inflammation,and relieving pain.Other anti-osteoarthritis small molecule drugs have shown promise in promoting stem cell chondrogenic differentiation and cartilage matrix reconstruction.(3)At present,small molecule drugs targeting the pathophysiological process of osteoarthritis to delay the progression of osteoarthritis are still in the experimental stage,but most of these small molecule drugs have shown the expected results in the experimental process,and there are no relevant studies to illustrate the efficacy of small molecule drugs in the treatment of osteoarthritis.(4)Small molecule drugs for the treatment of osteoarthritis have reached the expected experimental results in the basic experimental stage.Numerous studies have exhibited that small molecule drugs can target the suppression of specific proteins,cytokines,and signal transduction pathways that cause osteoarthritis,so as to treat osteoarthritis.Nevertheless,its safety and effectiveness still need to be identified by further basic and clinical studies.This process needs to be investigated and studied by more scholars.(5)At present,many scholars in and outside China have made contributions to the treatment of osteoarthritis.Compared with traditional treatment methods,small molecule drugs reveal better efficacy and safety in the basic experimental stage,and it is expected to become an emerging method for the treatment of osteoarthritis in the future to rid patients of pain.
9.Panax notoginseng saponins regulate differential miRNA expression in osteoclast exosomes and inhibit ferroptosis in osteoblasts
Hongcheng TAO ; Ping ZENG ; Jinfu LIU ; Zhao TIAN ; Qiang DING ; Chaohui LI ; Jianjie WEI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):4011-4021
BACKGROUND:Steroid-induced femoral head necrosis is mostly caused by long-term and extensive use of hormones,but its specific pathogenesis is not yet clear and needs further study. OBJECTIVE:To screen out the differential miRNAs in osteoclast exosomes after the intervention of Panax notoginseng saponins,and on this basis,to further construct an osteogenic-related ferroptosis regulatory network to explore the potential mechanism and research direction of steroid-induced osteonecrosis of the femoral head. METHODS:MTT assay was used to detect the toxic effects of different concentrations of dexamethasone and different mass concentrations of Panax notoginseng saponins on Raw264.7 cell line.Tartrate resistant acid phosphatase staining and TUNEL assay were used to detect the effects of Panax notoginseng saponins on osteoclast inhibition and apoptosis.Exosomes were extracted from cultured osteoclasts with Panax notoginseng saponins intervention.Exosomes from different groups were sequenced to identify differentially expressed miRNAs.CytoScape 3.9.1 was used to construct and visualize the regulatory network between differentially expressed miRNAs and mRNAs.Candidate mRNAs were screened by GO analysis and KEGG analysis.Finally,the differential genes related to ferroptosis were screened out,and the regulatory network of ferroptosis-related genes was constructed. RESULTS AND CONCLUSION:(1)The concentration of dexamethasone(0.1 μmol/L)and Panax notoginseng saponins(1 736.85 μg/mL)suitable for intervention of Raw264.7 cells was determined by MTT assay.(2)Panax notoginseng saponins had an inhibitory effect on osteoclasts and could promote their apoptosis.(3)Totally 20 differentially expressed miRNAs were identified from osteoclast-derived exosome samples,and 11 differentially expressed miRNAs related to osteogenesis were predicted by target mRNAs.The regulatory networks of 4 up-regulated differentially expressed miRNAs corresponding to 155 down-regulated candidate mRNAs and 7 down-regulated differentially expressed miRNAs corresponding to 238 up-regulated candidate mRNAs were constructed.(4)Twenty-four genes related to ferroptosis were screened out from the differential genes.Finally,12 networks were constructed(miR-98-5p/PTGS2,miR-23b-3p/PTGS2,miR-425-5p/TFRC,miR-133a-3p/TFRC,miR-185-5p/TFRC,miR-23b-3p/NFE2L2,miR-23b-3p/LAMP2,miR-98-5p/LAMP2,miR-182-5p/LAMP2,miR-182-5p/TLR4,miR-23b-3p/ZFP36,and miR-182-5p/ZFP36).These results indicate that Panax notoginseng saponins may regulate osteoblast ferroptosis by regulating the expression of miRNAs derived from osteoclast exosomes,thus providing a new idea for the study of the mechanism of steroid-induced femoral head necrosis.
10.Analysis of Tongue Coating Microbiota Characteristics in Coronary Heart Disease with Qi Deficiency and Blood Stasis Syndrome
Chuhao WANG ; Yongyue LIU ; Zhaoxuan DING ; Xiaoqing ZHANG
Journal of Traditional Chinese Medicine 2025;66(5):501-508
ObjectiveTo explore the characteristics of the tongue coating microbiota in patients of coronary heart disease (CHD) with qi deficiency and blood stasis syndrome. MethodsA total of 27 CHD patients with qi deficiency and blood stasis syndrome, 29 patients with non-qi deficiency and blood stasis syndrome, and 20 healthy individuals were included in this study. The tongue coating microbiota of the participants was analyzed using 16S rDNA high-throughput sequencing technology, followed by Alpha and Beta diversity analyses and comparisons of microbial abundance. ResultsA total of 479 operational taxonomic units (OTUs) were detected, among which 245 OTUs were shared across all three groups. There were 33 OTUs unique to the qi deficiency and blood stasis syndrome group, 21 OTUs unique to the non-qi deficiency and blood stasis syndrome group, and 121 OTUs unique to the healthy group. The observed species count (Sob), total species richness (Chao1), abundance-based coverage estimator (ACE), and Shannon diversity index were significantly lower in the qi deficiency and blood stasis syndrome and non-qi deficiency and blood stasis syndrome groups compared to the healthy group (P<0.05). Principal coordinate analysis (PCoA) of the tongue coating microbiota showed significant differences in distance matrices among the three groups (P<0.05). Compared with the healthy group, the qi deficiency and blood stasis syndrome group exhibited an increased abundance of Actinobacteria, Patescibacteria, Spirochaetes, Verrucomicrobia, Rothia, TM7X, Gemella, and Corynebacterium, while Fusobacteria, Cyanobacteria, Leptotrichia, and Lactobacillus decreased (P<0.05). In the non-qi deficiency and blood stasis syndrome group, Actinobacteria, Verrucomicrobia, Rothia, and Corynebacterium increased, whereas Cyanobacteria and Lactobacillus reduced (P<0.05). When comparing with the non-qi deficiency and blood stasis syndrome group, the qi deficiency and blood stasis syndrome group had a significantly higher abundance of Patescibacteria, Peptostreptococcus, Solobacterium, Filifactor, Moraxella, Porphyromonas endodontalis, and Capnocytophaga, while Cyanobacteria reduced (P<0.05). Conclusuion Patients with CHD of qi deficiency and blood stasis syndrome exhibit a decrease in beneficial bacteria and an increase in pathogenic bacteria. Patescibacteria, Peptostreptococcus, Solobacterium, Filifactor, Moraxella, Porphyromonas endodontalis, and Capnocytophaga were identified as the key differential microbiota distinguishing qi deficiency and blood stasis syndrome from non-qi deficiency and blood stasis syndrome patients.

Result Analysis
Print
Save
E-mail