1.Dimethyl fumarate modulates M1/M2 macrophage polarization to ameliorate periodontal destruction by increasing TUFM-mediated mitophagy.
Liang CHEN ; Pengxiao HU ; Xinhua HONG ; Bin LI ; Yifan PING ; ShuoMin CHEN ; Tianle JIANG ; Haofu JIANG ; Yixin MAO ; Yang CHEN ; Zhongchen SONG ; Zhou YE ; Xiaoyu SUN ; Shufan ZHAO ; Shengbin HUANG
International Journal of Oral Science 2025;17(1):32-32
Periodontitis is a common oral disease characterized by progressive alveolar bone resorption and inflammation of the periodontal tissues. Dimethyl fumarate (DMF) has been used in the treatment of various immune-inflammatory diseases due to its excellent anti-inflammatory and antioxidant functions. Here, we investigated for the first time the therapeutic effect of DMF on periodontitis. In vivo studies showed that DMF significantly inhibited periodontal destruction, enhanced mitophagy, and decreased the M1/M2 macrophage ratio. In vitro studies showed that DMF inhibited macrophage polarization toward M1 macrophages and promoted polarization toward M2 macrophages, with improved mitochondrial function, inhibited oxidative stress, and increased mitophagy in RAW 264.7 cells. Furthermore, DMF increased intracellular mitochondrial Tu translation elongation factor (TUFM) levels to maintain mitochondrial homeostasis, promoted mitophagy, and modulated macrophage polarization, whereas TUFM knockdown decreased the protective effect of DMF. Finally, mechanistic studies showed that DMF increased intracellular TUFM levels by protecting TUFM from degradation via the ubiquitin-proteasomal degradation pathway. Our results demonstrate for the first time that DMF protects mitochondrial function and inhibits oxidative stress through TUFM-mediated mitophagy in macrophages, resulting in a shift in the balance of macrophage polarization, thereby attenuating periodontitis. Importantly, this study provides new insights into the prevention of periodontitis.
Dimethyl Fumarate/pharmacology*
;
Mitophagy/drug effects*
;
Animals
;
Mice
;
Macrophages/metabolism*
;
Periodontitis/prevention & control*
;
RAW 264.7 Cells
;
Oxidative Stress/drug effects*
;
Peptide Elongation Factor Tu/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Mitochondria/drug effects*
2.Effect of Dimethyl Fumarate (DMF) on T-cell Acute Lymphoblastic Leukemia.
Jin-Ge XU ; Qiao CHENG ; Gui-Hua ZHANG ; Li-Ping KONG ; Li LI ; Kai-Ge LIU ; Jin-Yan WU ; Qiu-Rong ZHANG
Journal of Experimental Hematology 2022;30(1):1-5
OBJECTIVE:
To explore the effect and possible mechanism of dimethyl fumarate (DMF) on T-cell acute lymphoblastic leukemia (T-ALL), and provide experimental and theoretical basis for the clinical treatment of T-ALL.
METHODS:
Jurkat cells were treated with different concentrations of DMF for 24 hours, and then the proportion and absolute count of Ki67-positive Jurkat cells were analyzed by flow cytometry. Meanwhile, the protein levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and E3 ubiquitin ligase HACE1 in Jurkat cells treated with DMF for 24 hours were evaluated by Western blot. Nrf2 proteins were co-immunoprecipitated in Jurkat cells, and then HACE1 protein was assessed by Western blot. Plasmids of Flag-Nrf2 and different gradients of Flag-HACE1 were transfected into HEK293T cells, and the levels of Flag-Nrf2 were detected by Western blot after 48 hours.
RESULTS:
DMF could significantly inhibit the proportion and absolute count of Ki67-positive Jurkat cells, and DMF inhibited the proliferation of Jurkat cells in a dose-dependent manner (r=0.9595, r=0.9054). DMF could significantly up-regulate the protein levels of Nrf2 and E3 ubiquitin ligase HACE1 in Jurkat cells (P<0.01, P<0.01). HACE1 physically interacted with Nrf2 in Jurkat cells. Overexpression of Flag-HACE1 significantly increased the protein level of Flag-Nrf2 in a dose-dependent manner (r=0.9771).
CONCLUSION
DMF inhibits the proliferation of T-cell acute lymphoblastic leukemia cell. The mechanism may be that, DMF significantly up-regulates the protein levels of Nrf2 and E3 ubiquitin ligase HACE1, and HACE1 interacts with Nrf2 and positively regulates Nrf2 protein level.
Dimethyl Fumarate/pharmacology*
;
HEK293 Cells
;
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
T-Lymphocytes
;
Ubiquitin-Protein Ligases
3.Oral Disease-Modifying Therapies for Multiple Sclerosis.
Woojun KIM ; Manuella Edler ZANDONA ; Su Hyun KIM ; Ho Jin KIM
Journal of Clinical Neurology 2015;11(1):9-19
Classical multiple sclerosis (MS) treatments using first-line injectable drugs, although widely applied, remain a major concern in terms of therapeutic adherence and efficacy. New oral drugs recently approved for MS treatment represent significant advances in therapy. The oral route of administration clearly promotes patient satisfaction and increases therapeutic compliance. However, these drugs may also have safety and tolerability issues, and a thorough analysis of the risks and benefits is required. Three oral drugs have been approved by regulatory agencies for MS treatment: fingolimod, teriflunomide, and dimethyl fumarate. This article reviews the mechanisms of action, safety, and efficacy of these drugs and two other drugs that have yielded positive results in phase III trials: cladribine and laquinimod.
Cladribine
;
Compliance
;
Dimethyl Fumarate
;
Fingolimod Hydrochloride
;
Multiple Sclerosis*
;
Patient Satisfaction
;
Risk Assessment
4.Modulatory effect of fumaric acid esters on superoxide-anion generation in human phagocytes.
Ke-jian ZHU ; Jian-ping CEN ; Ai-hua LIN ; Na JIN ; Hao CHENG
Acta Pharmaceutica Sinica 2007;42(11):1215-1217
Fumaric acid esters (FAE), mainly dimethylfumarate (DMF), have been shown to be highly efficacious in the treatment of psoriasis. Among the potential side effects of FAE therapy, lymphocytopenia is sometimes observed. In order to address the question whether FAE may interfere with systems of the innate defense, the modulatory role of FAE on the generation of superoxide-anion by human monocytes and neutrophils was studied by measuring the reduction of cytochrome c. Various concentrations of DMF and its metabolite methylhydrogenfumarate (MHF) were used to observe their modulatory effect on superoxide-anion generation by monocytes and neutrophils in response to bacteria (S. aureus and E. coli) and candida (C. albicans). Dexamethasone (DXM, 1 x 10(-7) mol x L(-1)) was also studied at the same time. We found that DXM significantly inhibited superoxide-anion generation from monocytes in response to bacteria and C. albicans, whereas DMF and MHF (10-20 microg x mL(-1)) significantly increased the production of superoxide-anion in monocytes in response to the above mentioned bacteria. DXM, DMF and MHF did not affect superoxide-anion generation of neutrophils. Our data indicate that DMF and MHF enhance superoxide-anion generation in human monocytes as one of the important mechanisms of innate defense against microorganisms.
Candida albicans
;
immunology
;
Cells, Cultured
;
Cytochrome c Group
;
metabolism
;
Dermatologic Agents
;
pharmacology
;
Dimethyl Fumarate
;
Escherichia coli
;
immunology
;
Fumarates
;
pharmacology
;
Humans
;
Phagocytes
;
metabolism
;
Staphylococcus aureus
;
immunology
;
Superoxides
;
metabolism
;
Zymosan
;
immunology

Result Analysis
Print
Save
E-mail