2.Experimental research progress in traditional Chinese medicine prevention and treatment of diabetic peripheral neuropathy based on autophagy.
Su-Su HUANG ; Xue-Ru WANG ; Jiu-Shu YUAN ; Lian DU
China Journal of Chinese Materia Medica 2023;48(23):6315-6323
Diabetic peripheral neuropathy(DPN) is a chronic complication resulted from peripheral nerve injury in the late stage of diabetes. It involves a variety of pathological changes such as oxidative stress, endoplasmic reticulum stress, neuroinflammation, and apoptosis of Schwann cells(SCs). DPN is the main factor leading to lower limb disability or amputation in diabetic patients, with high incidence, long disease course, and poor prognosis. The modern medicine treatment of DPN mainly focuses on controlling blood glucose and improving microcirculation and nerve nutrition, which can only mitigate the clinical symptoms and not fundamentally reverse the pathological changes of peripheral nerves. Autophagy is a self-clearing mechanism that maintains cellular homeostasis by removing excess metabolites. Traditional Chinese medicine(TCM), featuring the holistic concept and syndrome differentiation, can treat chronic diseases in a multi-target, multi-pathway, and wide-range manner. Modern studies have shown that the occurrence and development of DPN are related to a variety of pathological changes, and autophagy is a key mechanism associated with DPN. The environment with persistent high glucose can lead to the inhibition or over-activation of peripheral nerve cells, which causes irreversible damage of nerve cells and the occurrence and development of DPN. Therefore, restoring autophagy balance and reducing nerve damage is one of the key ways to treat DPN. The recent studies have confirmed that some active ingredients in traditional Chinese medicines and TCM compound prescriptions can inhibit the oxidative stress, endoplasmic reticulum stress, mitochondrial damage, inflammation, and apoptosis of SCs in DPN by regulating the autophagy pathway, thus playing a role in the prevention and treatment of DPN. However, the systematic induction in this field remains to be carried out. This paper reviewed the relevant literature, explained the mechanism of TCM in the prevention and treatment of DPN by regulating autophagy, and summarized the potential targets of TCM in the treatment of DPN, with a view to providing new ideas for clinical research and drug development.
Humans
;
Autophagy
;
Diabetes Mellitus
;
Diabetic Neuropathies/complications*
;
Medicine, Chinese Traditional
;
Oxidative Stress
;
Schwann Cells/pathology*
3.Potential Medicinal Value of Rhein for Diabetic Kidney Disease.
Xi MAO ; Ding-Qiao XU ; Shi-Jun YUE ; Rui-Jia FU ; Sai ZHANG ; Yu-Ping TANG
Chinese journal of integrative medicine 2023;29(10):951-960
Diabetic kidney disease (DKD) is the primary cause of mortality among diabetic patients. With the increasing prevalence of diabetes, it has become a major concern around the world. The therapeutic effect of clinical use of drugs is far from expected, and therapy choices to slow the progression of DKD remain restricted. Therefore, research on new drugs and treatments for DKD has been a hot topic in the medical field. It has been found that rhein has the potential to target the pathogenesis of DKD and has a wide range of pharmacological effects on DKD, such as anti-nephritis, decreasing blood glucose, controlling blood lipids and renal protection. In recent years, the medical value of rhein in the treatment of diabetes, DKD and renal disease has gradually attracted worldwide attention, especially its potential in the treatment of DKD. Currently, DKD can only be treated with medications from a single symptom and are accompanied by adverse effects, while rhein improves DKD with a multi-pathway and multi-target approach. Therefore, this paper reviews the therapeutic effects of rhein on DKD, and proposes solutions to the limitations of rhein itself, in order to provide valuable references for the clinical application of rhein in DKD and the development of new drugs.
Humans
;
Diabetic Nephropathies/drug therapy*
;
Kidney/pathology*
;
Anthraquinones/therapeutic use*
;
Diabetes Mellitus
4.Analysis of clinicopathological characteristics of non-alcoholic fatty liver disease.
Jiao LI ; Ye Fan YANG ; Miao Miao SUN ; Ying Yun GONG ; Hong Wen ZHOU ; Zhi Hong ZHANG
Chinese Journal of Pathology 2023;52(5):486-491
Objective: To investigate the clinical and pathologic characteristics of obese adults with nonalcoholic fatty liver disease (NAFLD) and to aid the diagnosis of nonalcoholic steatohepatitis (NASH). Methods: A total of 262 patients eligible for inclusion who received volume reduction metabolism surgery and liver biopsy in the First Affiliated Hospital of Nanjing Medical University from June 2018 to September 2019 were selected. HE staining, reticular fiber staining and Masson staining were performed. Statistical analysis was performed using SPSS 20.0. Results: The patients ranged in age from 18 to 66 years. Among the 262 cases, 65 cases (65/262, 24.8%) were male and 197 cases (197/262, 75.2%) were female. Sixty-one cases (61/262, 23.3%) were non-NAFLD, 201 cases (201/262, 76.7%) were NAFLD including 27 cases (27/201, 13.4%) of nonalcoholic fatty live (NAFL) and 174 cases (174/201, 86.6%) of NASH. The main lesions of NAFLD were in hepatic acinus zone 3. There were significant differences in age, alanine aminotransferase (ALT), glutamic oxaloacetic transaminase (AST), body mass index (BMI), fasting blood-glucose (FPG) and apolipoprotein A (APOA) levels among the non-NAFLD group, NAFL group and NASH group (P<0.05). Patients with BMI≥35 m/kg2 combined with type 2 diabetes had a higher prevalence of NASH. Multiple logistic regression showed that ALT and APOA were independent predictors of NASH (P<0.001, OR=1.05, 95%CI: 1.020-1.082; P=0.027, OR=0.916, 95%CI: 0.878-0.941). Total cholesterol (CHO) and high-density lipoprotein (HDL) were independent predictors of lobular inflammation (P=0.043, 95%CI: 0.010-0.634; P=0.024, 95%CI:-3.068--0.216). AST and HDL were independent predictors of fibrosis stage (P=0.029, 95%CI: 0.001-0.021; P<0.001, 95%CI:-2.670--0.645). Conclusions: Biochemical indicators of NAFLD are closely related to its pathology. The histological lesions of NAFLD are mainly present in hepatic acinar area 3. The diagnosis of NASH is supported by extensive steatosis and high levels of CHO, ALT, AST and BMI, low levels of HDL and ApoA in biochemical markers, but pathological examination is still the gold standard for it.
Adult
;
Humans
;
Male
;
Female
;
Adolescent
;
Young Adult
;
Middle Aged
;
Aged
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Diabetes Mellitus, Type 2/pathology*
;
Liver/pathology*
;
Obesity/pathology*
;
Apolipoproteins A
6.Role of TGF-β/Smad signaling pathway in diabetic kidney disease and research progress of traditional Chinese medicine intervention.
Yan-Xu CHEN ; Xiao-Xue JIANG ; Qin-Yuan ZHANG ; Chang-Qing XU ; Yao-Mu HU ; Cai-Yun JIN ; Bo-Ling ZHANG ; Yao-Qin FU ; Zhi-Sheng JIN
China Journal of Chinese Materia Medica 2023;48(10):2630-2638
Diabetic kidney disease is an important microvascular complication of diabetes and the leading cause of end-stage renal disease. Its pathological characteristics mainly include epithelial mesenchymal transition(EMT) in glomerulus, podocyte apoptosis and autophagy, and damage of glomerular filtration barrier. Transforming growth factor-β(TGF-β)/Smad signaling pathway is specifically regulated by a variety of mechanisms, and is a classic pathway involved in physiological activities such as apoptosis, proliferation and differentiation. At present, many studies have found that TGF-β/Smad signaling pathway plays a key role in the pathogenesis of diabetic kidney disease. Traditional Chinese medicine has significant advantages in the treatment of diabetic kidney disease for its multi-component, multi-target and multi-pathway characteristics, and some traditional Chinese medicine extracts, traditional Chinese medicines and traditional Chinese medicine compound prescription improve the renal injury of diabetic kidney disease by regulating TGF-β/Smad signaling pathway. This study clarified the mechanism of TGF-β/Smad signaling pathway in diabetic kidney disease by expounding the relationship between the key targets of the pathway and diabetic kidney disease, and summarized the research progress of traditional Chinese medicine in the treatment of diabetic kidney disease by interfering with TGF-β/Smad signaling pathway in recent years, to provide reference for drug research and clinical treatment of diabetic kidney disease in the future.
Humans
;
Diabetic Nephropathies/genetics*
;
Medicine, Chinese Traditional
;
Kidney/pathology*
;
Transforming Growth Factor beta/metabolism*
;
Signal Transduction
;
Epithelial-Mesenchymal Transition
;
Smad Proteins/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Diabetes Mellitus/genetics*
7.1, 25-(OH)2-VitD3 attenuates renal tubulointerstitial fibrosis in diabetic kidney disease by inhibiting Snail1-SMAD3/SMAD4 complex formation.
Chengchong HUANG ; Rong DONG ; Zhengsheng LI ; Jing YUAN
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):325-331
Objective To investigate the effect of 1, 25-(OH)2-VitD3 (VitD3) on renal tubuleinterstitial fibrosis in diabetic kidney disease. Methods NRK-52E renal tubular epithelial cells were divided into control group (5.5 mmol/L glucose medium treatment), high glucose group (25 mmol/L glucose medium treatment) and high glucose with added VitD3 group (25 mmol/L glucose medium combined with 10-8 mmol/L VitD3). The mRNA and protein expression of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in NRK-52E cells were detected by real-time quantitative PCR and Western blot analysis respectively. The expression and localization of Snail1, SMAD3 and SMAD4 were detected by immunofluorescence cytochemical staining. The binding of Snail1 with SMAD3/SMAD4 complex to the promoter of Coxsackie-adenovirus receptor (CAR) was detected by chromatin immunoprecipitation. The interaction among Snail1, SMAD3/SMAD4 and E-cadherin were detected by luciferase assay. Small interfering RNA (siRNA) was used to inhibit the expression of Snail1 and SMAD4, and the expression of mRNA of E-cadherin was detected by real-time quantitative PCR. SD rats were randomly divided into control group, DKD group and VitD3-treated group. DKD model was established by injection of streptozotocin (STZ) in DKD group and VitD3-treated group. After DKD modeling, VitD3-treated group was given VitD3 (60 ng/kg) intragastric administration. Control group and DKD group were given normal saline intragastric administration. In the DKD group and VitD3-treated group, insulin (1-2 U/kg) was injected subcutaneously to control blood glucose for 8 weeks. The mRNA and protein levels of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in renal tissues were detected by real-time quantitative PCR and Western blot analysis respectively. Immunohistochemistry was used to detect the expression and localization of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in renal tissue. Results Compared with the control group, the mRNA and protein expressions of Snail1, SMAD3, SMAD4 and α-SMA in NRK-52E cells cultured with high glucose and in DKD renal tissues were up-regulated, while E-cadherin expression was down-regulated. After the intervention of VitD3, the expression levels of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in the DKD model improved to be close to those in the control group. Chromatin immunoprecipitation showed that Snail1 and SMAD3/SMAD4 bound to CAR promoter IV, while VitD3 prevented Snail1 and SMAD3/SMAD4 from binding to CAR promoter IV. Luciferase assay confirmed the interaction among Snail1, SMAD3/SMAD4 and E-cadherin. After the mRNA of Snail1 and SMAD4 was inhibited by siRNA, the expression of E-cadherin induced by high glucose was up-regulated. Conclusion VitD3 could inhibit the formation of Snail1-SMAD3/SMAD4 complex and alleviate the renal tubulointerstitial fibrosis in DKD.
Animals
;
Rats
;
Cadherins/genetics*
;
Diabetes Mellitus/pathology*
;
Diabetic Nephropathies/pathology*
;
Epithelial-Mesenchymal Transition
;
Fibrosis/pathology*
;
Glucose/pharmacology*
;
Kidney/pathology*
;
Rats, Sprague-Dawley
;
RNA, Messenger
;
RNA, Small Interfering
;
Transforming Growth Factor beta1/metabolism*
;
Vitamin D/pharmacology*
8.Investigation on the mechanism of acupuncture in treatment of diabetes mellitus type 2 based on the network of islet macrophages-pancreatic adipose cells-islet β cells.
Yun LIU ; Tian-Cheng XU ; Zhi YU ; Bin XU
Chinese Acupuncture & Moxibustion 2022;42(4):433-436
To explore the possible new mechanism of acupuncture in the treatment of diabetes mellitus type 2 (T2DM) based on the islet inflammatory response. Islet macrophages, pancreatic adipose cells and islet β cells all participate in the pathogenesis of T2DM, and the three could form a network interaction. Acupuncture could regulate the functional phenotype of islet macrophages, improve the ectopic deposition of pancreatic adipose and repair the function of islet β cells, and play a unique advantage of overall regulation. It is suggested that acupuncture can be a potential treatment strategy for T2DM.
Acupuncture Therapy
;
Diabetes Mellitus, Type 2/therapy*
;
Humans
;
Insulin-Secreting Cells/pathology*
;
Islets of Langerhans/pathology*
;
Macrophages
9.Effects of moderate dose rosuvastatin on carotid plaque in patients with diabetes mellitus evaluated by magnetic resonance imaging.
Rui Xue DU ; Jian Ming CAI ; Qing Jun WANG ; Lei Ming LUO ; Xiao Na WANG ; Rui Hua CAO ; Hong Mei WU ; Ping YE
Chinese Journal of Cardiology 2022;50(6):570-576
Objective: To observe the effect of lipid regulating therapy on carotid atherosclerotic plaque in diabetic patients. Methods: The REACH study, conducted between March 2009 and February 2012, enrolled asymptomatic patients with magnetic resonance imaging (MRI) confirmed carotid atherosclerotic plaque, who had never taken lipid-lowering drugs. Patients were treated with a moderate dose of rosuvastatin for 24 months. Blood lipid levels were measured and carotid MRI was performed at baseline, 3 and 24 months after treatment. The volume of carotid wall and lipid-rich necrotic core (LRNC) were measured by image analysis software. This study retrospectively analyzed patients in the REACH study. Patients were divided into diabetes group and non-diabetic group. The changes of blood lipid level and MRI parameters of carotid atherosclerotic plaque were compared between the two groups and their correlation was analyzed. Results: A total of 38 patients with carotid atherosclerotic plaque were included in this study, including 13 patients (34.2%) in the diabetic group and 25 patients (65.8%) in the non-diabetic group. Baseline parameters were comparable between the two groups, except higher HbA1c level in diabetes group (P<0.05). Compared with baseline, the total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels were significantly decreased at 3 and 24 months in both two groups (P<0.05). The change of high-density lipoprotein cholesterol (HDL-C) in diabetes group was not obvious, while it was significantly increased in non-diabetic group at 24 months ((1.38±0.33) mmol/l vs. (1.26±0.26) mmol/l, P<0.05). MRI results showed that the volume and percentage of LRNC remained unchanged at 3 months, slightly decreased at 24 months (64.86 (45.37, 134.56) mm3 vs. 75.76 (48.20, 115.64) mm3, P>0.05) and (15.84% (11.47%, 24.85%) vs. 16.95% (11.64%, 22.91%), P>0.05) in diabetic group. In non-diabetic group, the volume and percentage of LRNC were significantly decreased at 3 months (63.01 (44.25, 188.64) mm3 vs. 72.49 (51.91, 199.59) mm3, P<0.05) and (13.76% (8.81%, 27.64%) vs. 16.04% (11.18%, 27.05%), P<0.05) respectively. Both parameters further decreased to (55.63 (27.18, 179.40) mm3) and (12.71% (8.39%, 24.41%)) at 24 months (both P<0.05). Wall volume, lumen volume and percent wall volume (PWV) were not affected post therapy in both two groups(P>0.05). There were no correlations between the changes of plaque parameters including volume and percentage of LRNC, wall volume, lumen volume, PWV and the changes of blood lipid parameters (TC, LDL-C, HDL-C and TG) in 3 and 24 months (P>0.05). Conclusion: Lipid-lowering therapy possesses different effects on carotid atherosclerotic plaque in diabetic and non-diabetic patients, and the LRNC improvement is more significant in non-diabetic patients as compared to diabetic patients.
Carotid Arteries/pathology*
;
Carotid Artery Diseases/drug therapy*
;
Cholesterol, HDL/therapeutic use*
;
Cholesterol, LDL
;
Diabetes Mellitus
;
Humans
;
Magnetic Resonance Imaging/methods*
;
Necrosis/pathology*
;
Plaque, Atherosclerotic/drug therapy*
;
Retrospective Studies
;
Rosuvastatin Calcium/therapeutic use*
10.Role of hyperglycemia-induced 5-hydroxytryptamine degradation of hepatic stellate cells in hepatic inflammation and fibrosis induced by type 2 diabetes mellitus.
Xiu Rui LIANG ; Xue Chun SHAN ; Jing GUAN ; Rui ZHANG ; Jing YANG ; Yi ZHANG ; Jia Qi JIN ; Yu Xin ZHANG ; Fan XU ; Ji Hua FU
Journal of Peking University(Health Sciences) 2022;54(6):1141-1150
OBJECTIVE:
To explore the role of 5-hydroxytryptamine (5-HT) in type 2 diabetes mellitus (T2DM)-related hepatic inflammation and fibrosis.
METHODS:
Male C57BL/6J mice were used to establish T2DM model by high-fat diet feeding combined with intraperitoneal injection of streptozotocin. Then, the mice with hyperglycemia were still fed with high-fat diet for nine weeks, and treated with or without 5-HT2A receptor (5-HT2AR) antagonist sarpogrelate hydrochloride (SH) and 5-HT synthesis inhibitor carbidopa (CDP) (alone or in combination). To observe the role of 5-HT in the myofibroblastization of hepa-tic stellate cells (HSCs), human HSCs LX-2 were exposed to high glucose, and were treated with or without SH, CDP or monoamine oxidase A (MAO-A) inhibitor clorgiline (CGL). Hematoxylin & eosin and Masson staining were used to detect the pathological lesions of liver tissue section, immunohistochemistry and Western blot were used to analyze protein expression, biochemical indicators were measured by ELISA or enzyme kits, and levels of intracellular reactive oxygen species (ROS) were detected by fluorescent probe.
RESULTS:
There were up-regulated expressions of 5-HT2AR, 5-HT synthases and MAO-A, and elevated levels of 5-HT in the liver of the T2DM mice. In addition to reduction of the hepatic 5-HT levels and MAO-A expression, treatment with SH and CDP could effectively ameliorate liver lesions in the T2DM mice, both of which could ameliorate hepatic injury and steatosis, significantly inhibit the increase of hepatic ROS (H2O2) levels to alleviate oxidative stress, and markedly suppress the production of transforming growth factor β1 (TGF-β1) and the development of inflammation and fibrosis in liver. More importantly, there was a synergistic effect between SH and CDP. Studies on LX-2 cells showed that high glucose could induce up-regulation of 5-HT2AR, 5-HT synthases and MAO-A expression, increase intracellular 5-HT level, increase the production of ROS, and lead to myofibroblastization of LX-2, resulting in the increase of TGF-β1 synthesis and production of inflammatory and fibrosis factors. The effects of high glucose could be significantly inhibited by 5-HT2AR antagonist SH or be markedly abolished by mitochondrial 5-HT degradation inhibitor CGL. In addition, SH significantly suppressed the up-regulation of 5-HT synthases and MAO-A induced by high glucose in LX-2.
CONCLUSION
Hyperglycemia-induced myofibroblastization and TGF-β1 production of HSCs, which leads to hepatic inflammation and fibrosis in T2DM mice, is probably due to the up-regulation of 5-HT2AR expression and increase of 5-HT synthesis and degradation, resulting in the increase of ROS production in mitochondria. Among them, 5-HT2AR is involved in the regulation of 5-HT synthases and MAO-A expression.
Male
;
Mice
;
Humans
;
Animals
;
Hepatic Stellate Cells/pathology*
;
Transforming Growth Factor beta1/pharmacology*
;
Serotonin/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Diabetes Mellitus, Type 2/complications*
;
Hydrogen Peroxide/metabolism*
;
Mice, Inbred C57BL
;
Liver Cirrhosis/etiology*
;
Hyperglycemia/pathology*
;
Monoamine Oxidase/metabolism*
;
Inflammation
;
Glucose/metabolism*
;
Cytidine Diphosphate/pharmacology*

Result Analysis
Print
Save
E-mail