1.Magnesium promotes vascularization and osseointegration in diabetic states.
Linfeng LIU ; Feiyu WANG ; Wei SONG ; Danting ZHANG ; Weimin LIN ; Qi YIN ; Qian WANG ; Hanwen LI ; Quan YUAN ; Shiwen ZHANG
International Journal of Oral Science 2024;16(1):10-10
		                        		
		                        			
		                        			Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Kelch-Like ECH-Associated Protein 1/metabolism*
		                        			;
		                        		
		                        			Magnesium/metabolism*
		                        			;
		                        		
		                        			Osseointegration
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/metabolism*
		                        			;
		                        		
		                        			Endothelial Cells/metabolism*
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			
		                        		
		                        	
2.Lianmei Qiwu Decoction relieves diabetic cardiac autonomic neuropathy by regulating AMPK/TrkA/TRPM7 signaling pathway.
Xue-Mei SUN ; Hai-Gang JI ; Xin GAO ; Xin-Dong WANG
China Journal of Chinese Materia Medica 2023;48(7):1739-1750
		                        		
		                        			
		                        			This study investigated the effect of Lianmei Qiwu Decoction(LMQWD) on the improvement of cardiac autonomic nerve remodeling in the diabetic rat model induced by the high-fat diet and explored the underlying mechanism of LMQWD through the AMP-activated protein kinase(AMPK)/tropomyosin receptor kinase A(TrkA)/transient receptor potential melastatin 7(TRPM7) signaling pathway. The diabetic rats were randomly divided into a model group, an LMQWD group, an AMPK agonist group, an unloaded TRPM7 adenovirus group(TRPM7-N), an overexpressed TRPM7 adenovirus group(TRPM7), an LMQWD + unloaded TRPM7 adenovirus group(LMQWD+TRPM7-N), an LMQWD + overexpressed TRPM7 adenovirus group(LMQWD+TRPM7), and a TRPM7 channel inhibitor group(TRPM7 inhibitor). After four weeks of treatment, programmed electrical stimulation(PES) was employed to detect the arrhythmia susceptibility of rats. The myocardial cell structure and myocardial tissue fibrosis of myocardial and ganglion samples in diabetic rats were observed by hematoxylin-eosin(HE) staining and Masson staining. The immunohistochemistry, immunofluorescence, real-time quantitative polymerase chain reaction(RT-PCR), and Western blot were adopted to detect the distribution and expression of TRPM7, tyrosine hydroxylase(TH), choline acetyltransferase(ChAT), growth associated protein-43(GAP-43), nerve growth factor(NGF), p-AMPK/AMPK, and other genes and related neural markers. The results showed that LMQWD could significantly reduce the arrhythmia susceptibility and the degree of fibrosis in myocardial tissues, decrease the levels of TH, ChAT, and GAP-43 in the myocardium and ganglion, increase NGF, inhibit the expression of TRPM7, and up-regulate p-AMPK/AMPK and p-TrkA/TrkA levels. This study indicated that LMQWD could attenuate cardiac autonomic nerve remodeling in the diabetic state, and its mechanism was associated with the activation of AMPK, further phosphorylation of TrkA, and inhibition of TRPM7 expression.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			AMP-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			Nerve Growth Factor/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/drug therapy*
		                        			;
		                        		
		                        			TRPM Cation Channels/metabolism*
		                        			;
		                        		
		                        			GAP-43 Protein/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Diabetic Neuropathies/genetics*
		                        			;
		                        		
		                        			Fibrosis
		                        			
		                        		
		                        	
3.Methylene blue reduces IL-1β levels by enhancing ERK1/2 and AKT phosphorylation to improve diabetic retinopathy in rats.
Huade MAI ; Shenhong GU ; Biwei FU ; Xinbo JI ; Minghui CHEN ; Juming CHEN ; Yunbo ZHANG ; Yunyun LIN ; Chenghong LIU ; Yanling SONG
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):423-428
		                        		
		                        			
		                        			Objective To investigate the neuroprotective effect of methylene blue on diabetic retinopathy in rats. Methods Thirty SD rats were randomly divided into blank, control and experimental groups. The control and experimental groups were induced with diabetes by streptozotocin (STZ) intraperitoneal injection. After 6 weeks of successful modeling, the experimental group received intravitreal injection of methylene blue at a dose of [0.2 mg/(kg.d)], while the control group received an equal amount of dimethyl sulfoxide (DMSO) intravitreal injection, both continuously injected for 7 days. ELISA was used to detect the levels of retinal superoxide dismutase (SOD), 8-iso-prostaglandin F2alpha (iPF2α) and interleukin-1β (IL-1β) in rats. Western blot analysis was used to detect the expression of retinal extracellular signal-regulated kinase 1/2 phosphorylation (p-ERK1/2) and phosphorylated protein kinase B (p-AKT), and PAS staining was used to detect retinal morphological changes. Results Compared with the blank group rats, the retinal SOD activity in the control and experimental group rats was significantly reduced. iPF2α, IL-1β and p-ERK1/2 level increased, while p-AKT level decreased. Compared with the control group, the SOD activity of the experimental group rats increased. iPF2α and IL-1β level went down, while p-ERK1/2 and p-AKT level went up significantly. The overall thickness of the retinal layer and the number of retinal ganglion cells were significantly reduced. Conclusion Methylene blue improves diabetic retinopathy in rats by reducing retinal oxidative stress and enhancing ERK1/2 and AKT phosphorylation.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Diabetic Retinopathy/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinase 3/metabolism*
		                        			;
		                        		
		                        			Interleukin-1beta/metabolism*
		                        			;
		                        		
		                        			Methylene Blue/pharmacology*
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			MAP Kinase Signaling System
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/drug therapy*
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			
		                        		
		                        	
4.Asiatic acid improves insulin secretion of β cells in type 2 diabetes through TNF- α/Mfn2 pathway.
Lu LI ; Wei WANG ; Qiang XU ; Mingzhu HUANG
Journal of Zhejiang University. Medical sciences 2023;52(2):185-194
		                        		
		                        			OBJECTIVES:
		                        			To investigate the effects and molecular mechanisms of asiatic acid on β-cell function in type 2 diabetes mellitus (T2DM).
		                        		
		                        			METHODS:
		                        			The T2DM model was established by high fat diet and streptozotocin injection in ICR mice, and the effects of asiatic acid on glucose regulation were investigated in model mice. The islets were isolated from palmitic acid-treated diabetic mice. ELISA was used to detect the glucose-stimulated insulin secretion, tumor necrosis factor (TNF)-α and interleukin (IL)-6. ATP assay was applied to measure ATP production, and Western blotting was used to detect protein expression of mature β cell marker urocortin (Ucn) 3 and mitofusin (Mfn) 2. The regulatory effects of asiatic acid on glucose-stimulated insulin secretion (GSIS) and Ucn3 expression were also investigated after siRNA interference with Mfn2 or treatment with TNF-α.
		                        		
		                        			RESULTS:
		                        			Asiatic acid with the dose of 25 mg·kg-1·d-1 had the best glycemic control in T2DM mice and improved the homeostasis model assessment β index. Asiatic acid increased the expression of Mfn2 and Ucn3 protein and improved the GSIS function of diabetic β cells in vitro and in vivo (both P<0.05). Moreover, it improved the ATP production of islets of T2DM mice in vitro (P<0.05). Interfering Mfn2 with siRNA blocked the up-regulation of Ucn3 and GSIS induced by asiatic acid. Asiatic acid inhibited islet TNF-α content and increased Mfn2 and Ucn3 protein expression inhibited by TNF-α.
		                        		
		                        			CONCLUSIONS
		                        			Asiatic acid improves β cell insulin secretion function in T2DM mice by maintaining the β cell maturity, which may be related to the TNF-α/Mfn2 pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Insulin Secretion
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2/drug therapy*
		                        			;
		                        		
		                        			Islets of Langerhans/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Insulin/therapeutic use*
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental
		                        			;
		                        		
		                        			Mice, Inbred ICR
		                        			;
		                        		
		                        			Glucose/therapeutic use*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			RNA, Small Interfering/pharmacology*
		                        			;
		                        		
		                        			Adenosine Triphosphate
		                        			;
		                        		
		                        			GTP Phosphohydrolases/therapeutic use*
		                        			
		                        		
		                        	
5.Netrin-3 Suppresses Diabetic Neuropathic Pain by Gating the Intra-epidermal Sprouting of Sensory Axons.
Weiping PAN ; Xueyin HUANG ; Zikai YU ; Qiongqiong DING ; Liping XIA ; Jianfeng HUA ; Bokai GU ; Qisong XIONG ; Hualin YU ; Junbo WANG ; Zhenzhong XU ; Linghui ZENG ; Ge BAI ; Huaqing LIU
Neuroscience Bulletin 2023;39(5):745-758
		                        		
		                        			
		                        			Diabetic neuropathic pain (DNP) is the most common disabling complication of diabetes. Emerging evidence has linked the pathogenesis of DNP to the aberrant sprouting of sensory axons into the epidermal area; however, the underlying molecular events remain poorly understood. Here we found that an axon guidance molecule, Netrin-3 (Ntn-3), was expressed in the sensory neurons of mouse dorsal root ganglia (DRGs), and downregulation of Ntn-3 expression was highly correlated with the severity of DNP in a diabetic mouse model. Genetic ablation of Ntn-3 increased the intra-epidermal sprouting of sensory axons and worsened the DNP in diabetic mice. In contrast, the elevation of Ntn-3 levels in DRGs significantly inhibited the intra-epidermal axon sprouting and alleviated DNP in diabetic mice. In conclusion, our studies identified Ntn-3 as an important regulator of DNP pathogenesis by gating the aberrant sprouting of sensory axons, indicating that Ntn-3 is a potential druggable target for DNP treatment.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/metabolism*
		                        			;
		                        		
		                        			Axons/physiology*
		                        			;
		                        		
		                        			Diabetic Neuropathies
		                        			;
		                        		
		                        			Sensory Receptor Cells/metabolism*
		                        			;
		                        		
		                        			Neuralgia/metabolism*
		                        			
		                        		
		                        	
6.Excretion of three alkaloids from Simiao Pills in urine, feces, and bile between normal and type 2 diabetic rats.
Yan-Nan HU ; Zhen-Ye LUO ; Chang-Shun LIU ; Ting XIA ; Feng-Lin ZHANG ; Fei-Long CHEN ; Xiao-Mei TAN
China Journal of Chinese Materia Medica 2023;48(23):6509-6518
		                        		
		                        			
		                        			This study investigated the differences in excretion kinetics of three alkaloids and their four metabolites from Simiao Pills in normal and type 2 diabetic rats. The diabetes model was established in rats by injection of streptozotocin, and the alkaloids in urine, feces, and bile of normal and diabetic rats were detected by LC-MS/MS to explore the effect of diabetes on alkaloid excretion of Simiao Pills. The results showed that 72 h after intragastric administration of the extract of Simiao Pills, feces were the main excretion route of alkaloids from Simiao Pills. The total excretion rates of magnoflorine and berberine in normal rats were 4.87% and 56.54%, which decreased to 2.35% and 35.53% in diabetic rats, which had statistical significance(P<0.05). The total excretion rates of phellodendrine, magnoflorine, and berberine in the urine of diabetic rats decreased significantly, which were 53.57%, 60.84%, and 52.78% of those in normal rats, respectively. After 12 h of intragastric administration, the excretion rate of berberine in the bile of diabetic rats increased significantly, which was 253.33% of that of normal rats. In the condition of diabetes, the excretion rate of berberine metabolite, thalifendine significantly decreased in urine and feces, but significantly increased in bile. The total excretion rates of jateorrhizine and palmatine in the urine increased significantly, and t_(1/2) and K_e changed significantly. The results showed that diabetes affected the in vivo process of alkaloids from Simiao Pills, reducing their excretion in the form of prototype drug, affecting the biotransformation of berberine, and ultimately increasing the exposure of alkaloids in vivo, which would be conducive to the hypoglycemic effect of alkaloids. This study provides references for the clinical application and drug development of Simiao Pills in diabetes.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bile/metabolism*
		                        			;
		                        		
		                        			Chromatography, Liquid/methods*
		                        			;
		                        		
		                        			Berberine
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/metabolism*
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid/methods*
		                        			;
		                        		
		                        			Tandem Mass Spectrometry/methods*
		                        			;
		                        		
		                        			Feces
		                        			;
		                        		
		                        			Alkaloids/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2/metabolism*
		                        			
		                        		
		                        	
7.Tu-Xian Decoction ameliorates diabetic cognitive impairment by inhibiting DAPK-1.
Danyang WANG ; Bin YAN ; An WANG ; Qing SUN ; Junyi PANG ; Yangming CUI ; Guoqing TIAN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(12):950-960
		                        		
		                        			
		                        			Tu-Xian decoction (TXD), a traditional Chinese medicine (TCM) formula, has been frequently administered to manage diabetic cognitive impairment (DCI). Despite its widespread use, the mechanisms underlying TXD's protective effects on DCI have yet to be fully elucidated. As a significant regulator in neurodegenerative conditions, death-associated protein kinase-1 (DAPK-1) serves as a focus for understanding the action of TXD. This study was designed to whether TXD mediates its beneficial outcomes by inhibiting DAPK-1. To this end, a diabetic model was established using Sprague-Dawley (SD) rats through a high-fat, high-sugar (HFHS) diet regimen, followed by streptozotocin (STZ) injection. The experimental cohort was stratified into six groups: Control, Diabetic, TC-DAPK6, high-dose TXD, medium-dose TXD, and low-dose TXD groups. Following a 12-week treatment period, various assessments-including blood glucose levels, body weight measurements, Morris water maze (MWM) testing for cognitive function, brain magnetic resonance imaging (MRI), and histological analyses using hematoxylin-eosin (H&E), and Nissl staining-were conducted. Protein expression in the hippocampus was quantified through Western blotting analysis. The results revealed that TXD significantly improved spatial learning and memory abilities, and preserved hippocampal structure in diabetic rats. Importantly, TXD administration led to a down-regulation of proteins indicative of neurological damage and suppressed DAPK-1 activity within the hippocampal region. These results underscore TXD's potential in mitigating DCIvia DAPK-1 inhibition, positioning it as a viable therapeutic candidate for addressing this condition. Further investigation into TXD's molecular mechanisms may elucidate new pathways for the treatment of DCI.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Brain/metabolism*
		                        			;
		                        		
		                        			Cognitive Dysfunction/drug therapy*
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/metabolism*
		                        			;
		                        		
		                        			Hippocampus
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			
		                        		
		                        	
8.Jujuboside A ameliorates tubulointerstitial fibrosis in diabetic mice through down-regulating the YY1/TGF-β1 signaling pathway.
Yang-Yang LIU ; Lin LI ; Bei JI ; Shi-Long HAO ; Xiao-Feng KUANG ; Xin-Yun CAO ; Jia-Yu YUAN ; Zhen-Zhou JIANG ; Si-Tong QIAN ; Chu-Jing WEI ; Jing XU ; Xiao-Xing YIN ; Qian LU ; Ting-Ting YANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):656-668
		                        		
		                        			
		                        			Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus, which is characterized in renal tubulointerstitial fibrosis (TIF). The current study was designed to investigate the protective effect of Jujuboside A (Ju A) on TIF in type 2 diabetes (T2DM) mice, and explore its underlying anti-fibrosis mechanism. A mouse T2DM model was established using high fat diet (HFD) feeding combined with intraperitoneal injection of streptozotocin (STZ). Then, diabetic mice were treated with Ju A (10, 20 and 40 mg·kg-1·d-1, i.g.) for 12 weeks. Results showed that administration of Ju A not only down-regulated fasting blood glucose (FBG) levels, but also improved hyperlipidemia and renal function in diabetic mice. Moreover, the reduced ECM accumulation was observed in the renal cortex of Ju A treated diabetic mice, while the TIF progression was also attenuated by Ju A through blocking the epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (RTECs). Further mechanism studies showed that Ju A treatment effectively down-regulated the protein expression and subsequent nuclear translocation of Yin Yang 1 (YY1) in the renal cortex of diabetic mice, and reduced the levels of transforming growth factor-β1 (TGF-β1) in the serum and renal cortex of Ju A treated mice. According to invitro studies, the up-regulated YY1/TGF-β1 signaling pathway was restored by Ju A in high glucose (HG) cultured HK-2 cells. Taken together, these findings demonstrated that Ju A can ameliorate the TIF of DN through down-regulating the YY1/TGF-β1 signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Glucose
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2/drug therapy*
		                        			;
		                        		
		                        			Diabetic Nephropathies/metabolism*
		                        			;
		                        		
		                        			Fibrosis
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Saponins
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Streptozocin
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			
		                        		
		                        	
9.20(S)-ginsenoside Rh1 alleviates T2DM induced liver injury via the Akt/FOXO1 pathway.
Wen-Ya SU ; Mei-Ling FAN ; Ying LI ; Jun-Nan HU ; En-Bo CAI ; Hong-Yan ZHU ; Ming-Jie SONG ; Wei LI
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):669-678
		                        		
		                        			
		                        			Diabetes-associated liver injury becomes a dominant hepatopathy, leading to hepatic failure worldwide. The current study was designed to evaluate the ameliorative effects of ginsenoside Rh1 (G-Rh1) on liver injury induced by T2DM. A T2DM model was established using C57BL/6 mice through feeding with HFD followed by injection with streptozotocin at 100 mg·kg-1.. Then the mice were continuously administered with G-Rh1 (5 and 10 mg·kg-1), to explore the protective effects of G-Rh1 against liver injury. Results showed that G-Rh1 exerted significant effects on maintaining the levels of FBG and insulin, and ameliorated the increased levels of TG, TC and LDL-C induced by T2DM. Moreover, apoptosis in liver tissue was relieved by G-Rh1, according to histological analysis. Particularly, in diabetic mice, it was observed that not only the increased secretion of G6Pase and PEPCK in the gluconeogenesis pathway, but also inflammatory factors including NF-κB and NLRP3 were suppressed by G-Rh1 treatment. Furthermore, the underlying mechanisms by which G-Rh1 exhibited ameliorative effects was associated with its capacity to inhibit the activation of the Akt/FoxO1 signaling pathway induced by T2DM. Taken together, our preliminary study demonstrated the potential mechnism of G-Rh1 in protecting the liver against T2DM-induced damage.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chemical and Drug Induced Liver Injury, Chronic
		                        			;
		                        		
		                        			Cholesterol, LDL/pharmacology*
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2/metabolism*
		                        			;
		                        		
		                        			Forkhead Box Protein O1/pharmacology*
		                        			;
		                        		
		                        			Ginsenosides
		                        			;
		                        		
		                        			Insulin/metabolism*
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Streptozocin
		                        			
		                        		
		                        	
10.Expression, purification and bioactivity analysis of a recombinant fusion protein rHSA-hFGF21 in Pichia pastoris.
Tiantian HUANG ; Jianying QI ; Ganggang YANG ; Xianlong YE
Chinese Journal of Biotechnology 2022;38(9):3419-3432
		                        		
		                        			
		                        			Human fibroblast growth factor 21 (hFGF21) has become a candidate drug for regulating blood glucose and lipid metabolism. The poor stability and short half-life of hFGF21 resulted in low target tissue availability, which hampers its clinical application. In this study, the hFGF21 was fused with a recombinant human serum albumin (HSA), and the resulted fusion protein rHSA-hFGF21 was expressed in Pichia pastoris. After codon optimization, the recombinant gene fragment rHSA-hFGF21 was inserted into two different vectors (pPIC9k and pPICZαA) and transformed into three different strains (X33, GS115 and SMD1168), respectively. We investigated the rHSA-hFGF21 expression levels in three different strains and screened an engineered strain X33-pPIC9K-rHSA-hFGF21 with the highest expression level. To improve the production efficiency of rHSA-hFGF21, we optimized the shake flask fermentation conditions, such as the OD value, methanol concentration and induction time. After purification by hollow fiber membrane separation, Blue affinity chromatography and Q ion exchange chromatography, the purity of the rHSA-hFGF21 protein obtained was 98.18%. Compared to hFGF21, the biostabilities of rHSA-hFGF21, including their resistance to temperature and trypsinization were significantly enhanced, and its plasma half-life was extended by about 27.6 times. Moreover, the fusion protein rHSA-hFGF21 at medium and high concentration showed a better ability to promote glucose uptake after 24 h of stimulation in vitro. In vivo animal studies showed that rHSA-hFGF21 exhibited a better long-term hypoglycemic effect than hFGF21 in type 2 diabetic mice. Our results demonstrated a small-scale production of rHSA-hFGF21, which is important for large-scale production and clinical application in the future.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Glucose/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental
		                        			;
		                        		
		                        			Fibroblast Growth Factors
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypoglycemic Agents/metabolism*
		                        			;
		                        		
		                        			Methanol/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Pichia/metabolism*
		                        			;
		                        		
		                        			Recombinant Fusion Proteins
		                        			;
		                        		
		                        			Recombinant Proteins/metabolism*
		                        			;
		                        		
		                        			Saccharomycetales
		                        			;
		                        		
		                        			Serum Albumin/metabolism*
		                        			;
		                        		
		                        			Serum Albumin, Human/metabolism*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail